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Preface

Equivariant stable homotopy theory has a long tradition, starting from geo-
metrically motivated questions about symmetries of manifolds. The homotopy
theoretic foundations of the subject were laid by tom Dieck, Segal and May
and their students and collaborators in the 70’s, and during the last decades
equivariant stable homotopy theory has been very useful to solve computa-
tional and conceptual problems in algebraic topology, geometric topology and
algebraic K-theory. Various important equivariant theories naturally exist not
just for a particular group, but in a uniform way for all groups in a specific
class. Prominent examples of this are equivariant stable homotopy, equivariant
K-theory or equivariant bordism. Global equivariant homotopy theory studies
such uniform phenomena, i.e., the adjective ‘global’ refers to simultaneous and
compatible actions of all compact Lie groups.

This book introduces a new context for global homotopy theory. Various
ways to provide a home for global stable homotopy types have previously
been explored in [100, Ch.II], [68, Sec.5], [18] and [19]. We use a differ-
ent approach: we work with the well-known category of orthogonal spectra,
but use a much finer notion of equivalence, the global equivalences, than what
is traditionally considered. The basic underlying observation is that an orthog-
onal spectrum gives rise to an orthogonal G-spectrum for every compact Lie
group G, and the fact that all these individual equivariant objects come from
one orthogonal spectrum implicitly encodes strong compatibility conditions as
the group G varies. An orthogonal spectrum thus has G-equivariant homotopy
groups for every compact Lie group, and a global equivalence is a morphism
of orthogonal spectra that induces isomorphisms for all equivariant homotopy
groups for all compact Lie groups (based on ‘complete G-universes’, compare
Definition 4.1.3).

The structure on the equivariant homotopy groups of an orthogonal spec-
trum gives an idea of the information encoded in a global homotopy type in
our sense: the equivariant homotopy groups Jch(X) are contravariantly functo-

vii
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rial for continuous group homomorphisms (‘restriction maps’), and they are
covariantly functorial for inclusions of closed subgroups (‘transfer maps’).
The restriction and transfer maps enjoy various transitivity properties and in-
teract via a double coset formula. This kind of algebraic structure has been
studied before under different names, e.g., ‘global Mackey functor’, ‘inflation
functor’, .. .. From a purely algebraic perspective, there are various parameters
here than one can vary, namely the class of groups to which a value is assigned
and the classes of homomorphisms to which restriction maps or transfer maps
are assigned, and lots of variations have been explored. However, the decision
to work with orthogonal spectra and equivariant homotopy groups on complete
universes dictates a canonical choice: we prove in Theorem 4.2.6 that the alge-
bra of natural operations between the equivariant homotopy groups of orthog-
onal spectra is freely generated by restriction maps along continuous group
homomorphisms and transfer maps along closed subgroup inclusion, subject
to explicitly understood relations.

We define the global stable homotopy category GH by localizing the cat-
egory of orthogonal spectra at the class of global equivalences. Every global
equivalence is in particular a non-equivariant stable equivalence, so there is a
‘forgetful” functor U : GH — SH on localizations, where SH denotes the
traditional non-equivariant stable homotopy category. By Theorem 4.5.1 this
forgetful functor has a left adjoint L and a right adjoint R, both fully faithful,
that participate in a recollement of triangulated categories:

i L
e T~ S
GH' — " - GH Y . SH

N~ ~_
it R

Here GH" denotes the full subcategory of the global stable homotopy category
spanned by the orthogonal spectra that are stably contractible in the traditional,
non-equivariant sense.

The global sphere spectrum and suspension spectra are in the image of the
left adjoint (Example 4.5.11). Global Borel cohomology theories are the im-
age of the right adjoint (Example 4.5.19). The ‘natural’ global versions of
Eilenberg-Mac Lane spectra (Construction 5.3.8), Thom spectra (Section 6.1),
or topological K-theory spectra (Sections 6.3 and 6.4) are not in the image of
either of the two adjoints. Periodic global K-theory, however, is right induced
from finite cyclic groups, i.e., in the image of the analogous right adjoint from
an intermediate global homotopy category GH ., based on finite cyclic groups
(Example 6.4.27).

Looking at orthogonal spectra through the eyes of global equivalences is
like using a prism: the latter breaks up white light into a spectrum of colors,
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and global equivalences split a traditional, non-equivariant homotopy type into
many different global homotopy types. The first example of this phenomenon
that we will encounter refines the classifying space of a compact Lie group
G. On the one hand, there is the constant orthogonal space with value a non-
equivariant model for BG; and there is the global classifying space By G (see
Definition 1.1.27). The global classifying space is analogous to the geometric
classifying space of a linear algebraic group in motivic homotopy theory [123,
4.2], and it is the counterpart to the stack of G-principal bundles in the world
of stacks.

Another good example is the splitting up of the non-equivariant homotopy
type of the classifying space of the infinite orthogonal group. Again there is
the constant orthogonal space with value BO, the Grassmannian model BO
(Example 2.4.1), a different Grassmannian model bO (Example 2.4.18), the
bar construction model B°O (Example 2.4.14), and finally a certain ‘cofree’
orthogonal space R(BO). The orthogonal space bO is also a homotopy colimit,
as n goes to infinity, of the global classifying spaces Bg O(n). We discuss these
different global forms of BO in some detail in Section 2.4, and the associated
Thom spectra in Section 6.1.

In the stable global world, every non-equivariant homotopy type has two ex-
treme global refinements, the ‘left induced’ (the global analog of a constant or-
thogonal space, see Example 4.5.10) and the ‘right induced” global homotopy
type (representing Borel cohomology theories, see Example 4.5.19). Many
important stable homotopy types have other natural global forms. The non-
equivariant Eilenberg-Mac Lane spectrum of the integers has a ‘free abelian
group functor’ model (Construction 5.3.8), and another incarnation as the Eilen-
berg-Mac Lane spectrum of the constant global functor with value Z (Remark
4.4.12). These two global refinements of the integral Eilenberg-Mac Lane spec-
trum agree on finite groups, but differ for compact Lie groups of positive di-
mensions.

As already indicated, there is a great variety of orthogonal Thom spectra, in
real (or unoriented) flavors as mO and MO, as complex (or unitary) versions
mU and MU, and there are periodic versions mOP, MOP, mUP and MUP
of these; we discuss these spectra in Section 6.1. The theories represented by
mO and mU have the closest ties to geometry; for example, the equivariant
homotopy groups of mO receive Thom-Pontryagin maps from equivariant bor-
dism rings, and these are isomorphisms for products of finite groups and tori
(compare Theorem 6.2.33). The theories represented by MO are tom Dieck’s
homotopical equivariant bordism, isomorphic to ‘stable equivariant bordism’.

Connective topological K-theory also has two fairly natural global refine-
ments, in addition to the left and right induced ones. The ‘orthogonal sub-
space’ model ku (Construction 6.3.9) represents connective equivariant K-
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theory on the class of finite groups; on the other hand, global connective K-
theory ku® (Construction 6.4.32) is the global synthesis of equivariant con-
nective K-theory in the sense of Greenlees [66]. The periodic global K-theory
spectrum KU is introduced in Construction 6.4.9; as the name suggests, KU is
Bott periodic and represents equivariant K-theory.

The global equivalences are part of a closed model structure (see Theorem
4.3.18), so the methods of homotopical algebra can be used to study the sta-
ble global homotopy category. This works more generally relative to a class
¥ of compact Lie groups, where we define  -equivalences by requiring that
n]f( f) is an isomorphism for all integers and all groups in . We call a class
F of compact Lie groups a global family if it is closed under isomorphisms,
subgroups and quotients. For global families we refine the ¥ -equivalences to
a stable model structure, the 7 -global model structure, see Theorem 4.3.17.
Besides all compact Lie groups, interesting global families are the classes of
all finite groups, or all abelian compact Lie groups. The class of trivial groups
is also admissible here, but then we just recover the ‘traditional’ stable cate-
gory. If the family # is multiplicative, then the ¥ -global model structure is
monoidal with respect to the smash product of orthogonal spectra and satis-
fies the monoid axiom (Proposition 4.3.28). Hence this model structure lifts
to modules over an orthogonal ring spectrum and to algebras over an ultra-
commutative ring spectrum (Corollary 4.3.29).

Ultra-commutativity A recurring theme throughout this book is a phe-
nomenon that I call ultra-commutativity. 1 use this term in the unstable and
stable context for the homotopy theory of strictly commutative objects under
global equivalences. An ultra-commutative multiplication is significantly more
structure than just a coherently homotopy-commutative product (usually called
an E.-multiplication). For example, the extra structure gives rise to power op-
erations that can be turned into transfer maps (in additive notation) and norm
maps (in multiplicative notation). Another difference is that an unstable global
E-structure would give rise to naive deloopings (i.e., by trivial representa-
tions). As I hope discuss elsewhere, a global ultra-commutative multiplication,
in contrast, gives rise to ‘genuine’ deloopings (i.e., by non-trivial representa-
tions). As far as the objects are concerned, ultra-commutative monoids and
ultra-commutative ring spectra are not at all new and have been much studied
before; so one could dismiss the name ’ultra-commutativity’ as a mere market-
ing maneuver. However, the homotopy theory of ultra-commutative monoids
and ultra-commutative ring spectra with respect to global equivalences is new
and, in the author’s opinion, important. And important concepts deserve catchy
names.
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Global homotopy types as orbifold cohomology theories I would like to
briefly mention another reason for why one might be interested in global stable
homotopy theory. In short, global stable homotopy types represent genuine co-
homology theories on stacks, orbifolds, and orbispaces. Stacks and orbifolds
are concepts from algebraic geometry and geometric topology that allow us to
talk about objects that locally look like the quotient of a smooth object by a
group action, in a way that remembers information about the isotropy groups
of the action. Such ‘stacky’ objects can behave like smooth objects even if the
underlying spaces have singularities. As for spaces, manifolds and schemes,
cohomology theories are important invariants also for stacks and orbifolds,
and examples such as ordinary cohomology or K-theory lend themselves to
generalization. Special cases of orbifolds are ‘global quotients’, often denoted
M}/ G, for example for a smooth action of a compact Lie group G on a smooth
manifold M. In such examples, the orbifold cohomology of M//G is supposed
to be the G-equivariant cohomology of M. This suggests a way to define orb-
ifold cohomology theories by means of equivariant stable homotopy theory,
via suitable G-spectra E. However, since the group G is not intrinsic and can
vary, one needs equivariant cohomology theories for all groups G, with some
compatibility.

Part of the compatibility can be deduced from the fact that the same orbifold
can be presented in different ways; for example, if G is a closed subgroup of K,
then the global quotients M//G and (M X K)J/K describe the same orbifold. So
if the orbifold cohomology theory is represented by equivariant spectra {Eg}g
as indicated above, then necessarily Eg =~ resg(E k), 1.e., the equivariant ho-
motopy types are consistent under restriction. This is the characteristic feature
of global equivariant homotopy types, and it suggest that the latter ought to
define orbifold cohomology theories.

The approach to global homotopy theory presented in this book in particu-
lar provides a way to turn the above outline into rigorous mathematics. There
are different formal frameworks for stacks and orbifolds (algebro-geometric,
smooth, topological), and these objects can be studied with respect to various
notions of ‘equivalence’. The approach that most easily feeds into our present
context are the notions of fopological stacks and orbispaces as developed by
Gepner and Henriques in their paper [61]. Their homotopy theory of topolog-
ical stacks is rigged up so that the derived mapping spaces out of the classify-
ing stacks for principal G-bundles detect equivalences. In our setup, the global
classifying spaces of compact Lie groups (see Definition 1.1.27) play exactly
the same role, and this is another hint of a deeper connection. In fact, the global
homotopy theory of orthogonal spaces as developed in Chapter 1 is a model for
the homotopy theory of orbispaces in the sense of Gepner and Henriques. For a
formal comparison of the two models we refer the reader to the author’s paper



xii Preface

[145]. The comparison proceeds through yet another model, the global homo-
topy theory of ‘spaces with an action of the universal compact Lie group’. Here
the universal compact Lie group (which is neither compact nor a Lie group) is
the topological monoid £ of linear isometric self-embeddings of R*, and in
[145] we establish a global model structure on the category of L-spaces.

If we now accept that one can pass between stacks, orbispaces and orthog-
onal spaces in homotopically meaningful way, a consequence is that every
global stable homotopy type (i.e., every orthogonal spectrum) gives rise to
a cohomology theory on stacks and orbifolds. Indeed, by taking the unre-
duced suspension spectrum, every unstable global homotopy type is transferred
into the triangulated global stable homotopy category GH. In particular, tak-
ing morphisms in GH into an orthogonal spectrum E defines Z-graded E-
cohomology groups. The counterpart of a global quotient M// G in the global
homotopy theory of orthogonal spaces is the semifree orthogonal space Ly M
introduced in Construction 1.1.22. By the adjunction relating the global and G-
equivariant stable homotopy categories (see Theorem 4.5.24), the morphisms
[EXLg.vM, E] in the global stable homotopy category biject with the G-equi-
variant E-cohomology groups of M. In other words, when evaluated on a
global quotient M// G, our recipe for generating an orbifold cohomology the-
ory from a global stable homotopy type precisely returns the G-equivariant
cohomology of M, which was the original design criterion.

The procedure sketched so far actually applies to more general objects than
our global stable homotopy types: indeed, all that was needed to produce the
orbifold cohomology theory was a sufficiently exact functor from the homo-
topy theory of orbispaces to a triangulated category. If we aim for a stable ho-
motopy theory (as opposed to its triangulated homotopy category), then there is
a universal example, namely the stabilization of the homotopy theory of orbi-
spaces, obtained by formally inverting suspension. Our global theory is, how-
ever, richer than this ‘naive’ stabilization. Indeed, there is a forgetful functor
from the global stable homotopy category to the G-equivariant stable homo-
topy category, based on a complete G—universe; the equivariant cohomology
theories represented by such objects are usually called ’genuine’ (as opposed to
’naive’). Genuine equivariant cohomology theories have much more structure
than naive ones; this structure manifests itself in different forms, for exam-
ple as transfer maps, stability under ‘twisted suspension’ (i.e., smash product
with linear representation spheres), an extension of the Z-graded cohomology
groups to an RO(G)-graded theory, and an equivariant refinement of additivity
(the so called Wirthmiiller isomorphism). Hence global stable homotopy types
in the sense of this book represent genuine (as opposed to ‘naive’) orbifold
cohomology theories.
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Organization In Chapter 1 we set up unstable global homotopy theory us-
ing orthogonal spaces, i.e., continuous functors from the category of finite-
dimensional inner product spaces and linear isometric embeddings to spaces.
We introduce global equivalences (Definition 1.1.2), discuss global classify-
ing spaces of compact Lie groups (Definition 1.1.27), and set up the global
model structures on the category of orthogonal spaces (Theorem 1.2.21). In
Section 1.3 we investigate the box product of orthogonal spaces from a global
equivariant perspective. Section 1.4 introduces a variant of unstable global ho-
motopy theory based on a global family, i.e., a class ¥ of compact Lie groups
with certain closure properties. We discuss the  -global model structure and
record that for multiplicative global families, it lifts to category of modules
and algebras (Corollary 1.4.15). In Section 1.5 we discuss the G-equivariant
homotopy sets of orthogonal spaces and identify the natural structure between
them (restriction maps along continuous group homomorphisms). The study
of natural operations on ng(Y) is a recurring theme throughout this book; in
the later chapters we return to it in the contexts of ultra-commutative monoids,
orthogonal spectra and ultra-commutative ring spectra.

Chapter 2 is devoted to ultra-commutative monoids (a.k.a. commutative mo-
noids with respect to the box product, or lax symmetric monoidal functors),
which we want to advertise as a rigidified notion of ‘global E.-space’. In Sec-
tion 2.1 we establish a global model structure for ultra-commutative monoids
(Theorem 2.1.15). Section 2.2 introduces and studies global power monoids,
the algebraic structure that an ultra-commutative multiplication gives rise to
on the homotopy group Rep-functor m,(R). Section 2.3 contains a large col-
lection of examples of ultra-commutative monoids and interesting morphisms
between them. In Section 2.4 we discuss and compare different global refine-
ments of the non-equivariant homotopy type BO, the classifying space for the
infinite orthogonal group. Section 2.5 discusses ‘units’ and ‘group comple-
tions’ of ultra-commutative monoids. As an application of this technology we
formulate and prove a global, highly structured version of Bott periodicity, see
Theorem 2.5.41.

Chapter 3 is a largely self-contained exposition of many basics about equiv-
ariant stable homotopy theory for a fixed compact Lie group, modeled by or-
thogonal G-spectra. In Section 3.1 we recall orthogonal G-spectra and equiv-
ariant homotopy groups and prove their basic properties, such as the suspen-
sion isomorphism and long exact sequences of mapping cones and homotopy
fibers, and the additivity of equivariant homotopy groups on sums and prod-
ucts. Section 3.2 discusses the Wirthmiiller isomorphism and the closely re-
lated transfers. In Section 3.3 we introduce and study geometric fixed-point
homotopy groups, an alternative invariant to characterize equivariant stable
equivalences. Section 3.4 contains a proof of the double coset formula for the
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composite of a transfer followed by the restriction to a closed subgroup. We re-
view Mackey functors for finite groups and show that after inverting the group
order, the category of G-Mackey functors splits as a product, indexed by con-
jugacy classes of subgroups, of module categories over the Weyl groups (The-
orem 3.4.22). A topological consequence is that after inverting the group or-
der, equivariant homotopy groups and geometric fixed-point homotopy groups
determine each other in a completely algebraic fashion, compare Proposition
3.4.26 and Corollary 3.4.28. Section 3.5 is devoted to multiplicative aspects of
equivariant stable homotopy theory.

Chapter 4 sets the stage for stable global homotopy theory, based on the
notion of global equivalences for orthogonal spectra (Definition 4.1.3). We
discuss semifree orthogonal spectra and identify certain morphisms between
semifree orthogonal spectra as global equivalences (Theorem 4.1.29). In Sec-
tion 4.2 we investigate global functors, the natural algebraic structure on the
collection of equivariant homotopy groups of a global stable homotopy type.
Among other things, we explicitly calculate the algebra of natural operations
on equivariant homotopy groups (Theorem 4.2.6). In Section 4.3 we comple-
ment the global equivalences of orthogonal spectra by a stable model structure
that we call the global model structure. Its fibrant objects are the ‘global Q-
spectra’ (Definition 4.3.8), the natural concept of a ‘global infinite loop space’
in our setting. Here we work more generally relative to a global family ¥ and
consider the #-equivalences (i.e., equivariant stable equivalences for all com-
pact Lie groups in the family ). We follow the familiar outline: a certain
¥ -level model structure is Bousfield localized to an ¥ -global model structure
(see Theorem 4.3.17). In Section 4.4 we develop some basic theory around the
global stable homotopy category; since it comes from a stable model structure,
this category is naturally triangulated and we show that the suspension spectra
of global classifying spaces form a set of compact generators (Theorem 4.4.3).
In Section 4.5 we vary the global family: we construct and study left and right
adjoints to the forgetful functors associated with a change of global family
(Theorem 4.5.1). As an application of Morita theory for stable model cate-
gories we show that rationally the global homotopy category for finite groups
has an algebraic model, namely the derived category of rational global functors
(Theorem 4.5.29).

Chapter 5 focuses on ultra-commutative ring spectra, i.e., commutative or-
thogonal ring spectra under multiplicative global equivalences. Section 5.1 in-
troduces ‘global power functors’, the algebraic structure on the equivariant
homotopy groups of ultra-commutative ring spectra. Roughly speaking, global
power functors are global Green functors equipped with additional power op-
erations, satisfying various properties reminiscent of those of the power maps
x — X" in a commutative ring. The power operations give rise to norm maps
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(‘multiplicative transfers’) along finite index inclusions, and in our global con-
text, the norm maps conversely determine the power operations, compare Re-
mark 5.1.7. As we show in Theorem 5.1.11, the Oth equivariant homotopy
groups of an ultra-commutative ring spectrum form a global power functor.
In Section 5.2 we develop a description of the category of global power func-
tors via the comonad of ‘exponential sequences’ (Theorem 5.2.13) and dis-
cuss localization of global power functors at a multiplicative subset of the
underlying ring (Theorem 5.2.18). In Section 5.3 we give various examples
of global power functors, such as the Burnside ring global power functor, the
global functor represented by an abelian compact Lie group, free global power
functors, constant global power functors, and the complex representation ring
global functor. In Section 5.4 we establish the global model structure for ultra-
commutative ring spectra (Theorem 5.4.3) and show that every global power
functor is realized by an ultra-commutative ring spectrum (Theorem 5.4.14).

Chapter 6 is devoted to interesting examples of ultra-commutative ring spec-
tra. Section 6.1 discusses two orthogonal Thom spectra mO and MO. The
spectrum mO is globally connective and closely related to equivariant bor-
dism. The global functor 7 ,(mQO) admits a short and elegant algebraic presen-
tation: it is obtained from the Burnside ring global functor by imposing the
single relation u? =0, compare Theorem 6.1.44. The Thom spectrum MO
was first considered by tom Dieck and it represents ‘stable’ equivariant bor-
dism; it is periodic for orthogonal representations of compact Lie groups, and
admits Thom isomorphisms for equivariant vector bundles. The equivariant ho-
mology theory represented by MO can be obtained from the one represented
by mO in an algebraic fashion, by inverting the collection of ‘inverse Thom
classes’, compare Corollary 6.1.35. Section 6.2 recalls the geometrically de-
fined equivariant bordism theories. The Thom-Pontryagin construction maps
the unoriented G-equivariant bordism ring N to the equivariant homotopy
ring 7%(mO), and that map is an isomorphism when G is a product of a finite
group and a torus, see Theorem 6.2.33. We discuss global K-theory in Sections
6.3 and 6.4, which comes in three interesting flavors as connective global K-
theory ku, global connective K-theory ku® and periodic global K-theory KU
(and in the real versions ko, ko and KO).

We include three appendices where we collect material that is mostly well-
known, but that is either scattered through the literature or where we found
the existing expositions too sketchy. Appendix A is a self-contained review of
compactly generated spaces, our basic category to work in. Appendix B deals
with fundamental properties of equivariant spaces, including the basic model
structure in Proposition B.7. We also provide an exposition of the equivariant
I'-space machinery, culminating in a version of the Segal-Shimakawa deloop-
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ing machine. In Appendix C we review the basic definitions, properties and
constructions involving categories of enriched functors.

While most of the material in the appendices is well-known, there are a
few results I could not find in the literature. These results include the fact that
compactly generated spaces are closed under geometric realization (Proposi-
tion A.35 (iii)), fixed-points commute with geometric realization and latching
objects (Proposition B.1 (iv)), and compactly generated spaces are closed un-
der prolongation of I'-spaces (Proposition B.26). Also apparently new are the
results that prolongation of G-cofibrant I'-G-spaces to finite G-CW-complexes
is homotopically meaningful (Proposition B.48), and that prolongation of G-
cofibrant I'-G-spaces to spheres gives rise to G-Q-spectra (for very special
I'-G-spaces, see Theorem B.61) and to positive G-Q-spectra (for special I'-G-
spaces, see Theorem B.65). Here the key ideas all go back to Segal [155] and
Shimakawa [157]; however, we formulate our results for the prolongation (i.e.,
categorical Kan extension), whereas Segal and Shimakawa work with a bar
construction (also known as a homotopy coend or homotopy Kan extension) in-
stead. We also give a partial extension of the machinery to compact Lie groups,
whereas previous papers on the subject restrict attention to finite groups. As we
explain in Remark B.66, there is no hope to obtain a G-Q-spectrum by evalu-
ation on spheres for compact Lie groups of positive dimension. However, we
do prove in Theorem B.65 that evaluating a G-cofibrant special I'-G-space on
spheres yields a ‘G°-trivial positive G-Q-spectrum’, where G° is the identity
component of G. Our Appendix B substantially overlaps with the paper [115]
by May, Merling and Osorno that provides comparisons of prolongation, bar
construction and the operadic approach to equivariant deloopings.

Relation to other work The idea of global equivariant homotopy theory
is not at all new and has previously been explored in different contexts. For
example, in Chapter II of [100], Lewis and May define coherent families of
equivariant spectra; these consist of collections of equivariant coordinate-free
spectra in the sense Lewis, May and Steinberger, equipped with comparison
maps involving change of groups and change of universe functors.

The approach closest to ours are the global I ,-functors introduced by Green-
lees and May in [68, Sec. 5]. These objects are ‘global orthogonal spectra’ in
that they are indexed on pairs (G, V) consisting of a compact Lie group and a
G-representation V. The corresponding objects with commutative multiplica-
tion are called global I ,-functors with smash products in [68, Sec. 5] and it is
for these that Greenlees and May define and study multiplicative norm maps.
Clearly, an orthogonal spectrum gives rise to a global 7 ,-functors in the sense
of Greenlees and May. In the second chapter of her thesis [18], Bohmann com-
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pares the approaches of Lewis-May and Greenlees-May; in the paper [19] she
also relates these to orthogonal spectra.

Symmetric spectra in the sense of Hovey, Shipley and Smith [81] are another
prominent model for the (non-equivariant) stable homotopy category. Much of
what we do here with orthogonal spectra can also be done with symmetric
spectra, if one is willing to restrict to finite groups (as opposed to general com-
pact Lie groups). This restriction arises because only finite groups embed into
symmetric groups, while every compact Lie group embeds into an orthogonal
group. Hausmann [72, 73] has established a global model structure on the cat-
egory of symmetric spectra, and he showed that the forgetful functor is a right
Quillen equivalence from the category of orthogonal spectra with the ¥ in-
global model structure to the category of symmetric spectra with the global
model structure. While some parts of the symmetric and orthogonal theories
are similar, there are serious technical complications arising from the fact that
for symmetric spectra the naively defined equivariant homotopy groups are not
‘correct’, a phenomenon that is already present non-equivariantly.

Prerequisites This book assumes a solid background in algebraic topology
and (non-equivariant) homotopy theory, including topics such as singular ho-
mology and cohomology, CW-complexes, homotopy groups, mapping spaces,
loop spaces, fibrations and fiber bundles, Eilenberg-Mac Lane spaces, smooth
manifolds, Grassmannian and Stiefel manifolds. Two modern references that
contain all we need (and much more) are the textbooks by Hatcher [71] and
tom Dieck [180]. Some knowledge of non-equivariant stable homotopy theory
is helpful to appreciate the equivariant and global features of the structures and
examples we discuss; from a strictly logical perspective, however, the non-
equivariant theory is a degenerate special case of the global theory for the
global family of trivial Lie groups. In particular, by simply ignoring all group
actions, the examples presented in this book give models for many interesting
and prominent non-equivariant stable homotopy types.

Since actions of compact Lie groups are central to this book, some famil-
iarity with the structure and representation theory of compact Lie groups is
obviously helpful, but we give references to the literature whenever we need
any non-trivial facts. Many of our objects of study organize themselves into
model categories in the sense of Quillen [134], so some background on model
categories is necessary to understand the respective sections. The article [48]
by Dwyer and Spalinski is a good introduction, and Hovey’s book [80] is still
the definitive reference. Some acquaintance with unstable equivariant homo-
topy theory is useful (but not logically necessary). In contrast, we do not as-
sume any prior knowledge of equivariant stable homotopy theory, and Chapter
3 is a self-contained introduction based on equivariant orthogonal spectra. The
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last two sections of Chapter 4 study the global stable homotopy category, and
here we freely use the language of triangulated categories. The first chapter of
Neeman’s book [128] is a possible reference for the necessary background.

Throughout the book we work in the category of compactly generated spaces
in the sense of McCord [118], i.e., a k-spaces (also called Kelley spaces) that
satisfy the weak Hausdorff condition, see Definition A.l. Since the various
useful properties of compactly generated spaces are scattered through the lit-
erature, we include a detailed discussion in Appendix A.
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1
Unstable global homotopy theory

In this chapter we develop a framework for unstable global homotopy theory
via orthogonal spaces, i.e., continuous functors from the category of linear
isometries L to spaces. In Section 1.1 we define global equivalences of orthog-
onal spaces and establish many basic properties of this class of morphisms.
We also introduce global classifying spaces of compact Lie groups, the basic
building blocks of global homotopy types. In Section 1.2 we complement the
global equivalences by a global model structure on the category of orthogonal
spaces. The construction follows a familiar pattern, by Bousfield localization
of an auxiliary ‘strong level model structure’. Section 1.2 also contains a dis-
cussion of cofree orthogonal spaces, i.e., global homotopy types that are ‘right
induced’ from non-equivariant homotopy types. In Section 1.3 we recall the
box product of orthogonal spaces, a Day convolution product based on the or-
thogonal direct sum of inner product spaces. The box product is a symmetric
monoidal product, fully homotopical under global equivalences, and globally
equivalent to the cartesian product. Section 1.4 introduces an important vari-
ation of our theme, where we discuss unstable global homotopy theory for a
‘global family’, i.e., a class of compact Lie groups with certain closure prop-
erties. In Section 1.5 we introduce the G-equivariant homotopy set ﬂOG(Y) of
an orthogonal space and identify the natural structure on these sets (restriction
maps along continuous group homomorphisms). The study of natural oper-
ations on the sets nOG(Y) is a recurring theme throughout this book, and we
will revisit and extend the results in the later chapters for ultra-commutative
monoids, orthogonal spectra and ultra-commutative ring spectra.

Our main reason for working with orthogonal spaces is that they are the
direct unstable analog of orthogonal spectra, and in this unstable model for
global homotopy theory the passage to the stable theory in Chapter 4 is espe-
cially simple. However, there are other models for unstable global homotopy
theory, most notably fopological stacks and orbispaces as developed by Gep-
ner and Henriques in their paper [61]. For a comparison of these two models
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to our orthogonal space model we refer to the author’s paper [145]. The com-
parison proceeds through yet another model, the global homotopy theory of
‘spaces with an action of the universal compact Lie group’. Here the universal
compact Lie group (which is neither compact nor a Lie group) is the topo-
logical monoid £ of linear isometric self-embeddings of R®, and in [145] we
establish a global model structure on the category of L-spaces.

1.1 Orthogonal spaces and global equivalences

In this section we introduce orthogonal spaces, along with the notion of global
equivalences, our setup to rigorously formulate the idea of ‘compatible equiv-
ariant homotopy types for all compact Lie groups’. We introduce various ba-
sic techniques to manipulate global equivalences of orthogonal spaces, such as
recognition criteria by homotopy or strict colimits over representations (Propo-
sitions 1.1.7 and 1.1.17), and a list of standard constructions that preserve
global equivalences (Proposition 1.1.9). Theorem 1.1.10 is a cofinality result
for orthogonal spaces, showing that fairly general changes in the indexing cat-
egory of linear isometries do not affect the global homotopy type. Definition
1.1.27 introduces global classifying spaces of compact Lie groups, the basic
building blocks of global homotopy theory. Proposition 1.1.30 justifies the
name by explaining the sense in which the global classifying space B, G ‘glob-
ally classifies’ principal G-bundles.

Before we start, let us fix some notation and conventions. By a ‘space’ we
mean a compactly generated space in the sense of [118], i.e., a k-space (also
called Kelley space) that satisfies the weak Hausdorff condition, see Definition
A.1. We denote the category of compactly generated spaces by T and review
its basic properties in Appendix A.

An inner product space is a finite-dimensional real vector space equipped
with a scalar product, i.e., a positive-definite symmetric bilinear form. We de-
note by L the category with objects the inner product spaces and morphisms the
linear isometric embeddings. The category L is a topological category in the
sense that the morphism spaces come with a preferred topology:if¢ : V — W
is a linear isometric embedding, then the action of the orthogonal group O(W),
by post-composition, induces a bijection

OW)/0(g™) = L(,W), A-O@g") — Aoy,

where ¢t = W — ¢(V) is the orthogonal complement of the image of ¢. We
topologize L(V, W) so that this bijection is a homeomorphism, and this topol-
ogy is independent of ¢. If (vi,...,v;) is an orthonormal basis of V, then for
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every linear isometric embedding ¢ : V — W the tuple (¢(v}),...,o(vk))
is an orthonormal k-frame of W. This assignment is a homeomorphism from
L(V, W) to the Stiefel manifold of k-frames in W.

An example of an inner product spaces is the vector space R” with the stan-
dard scalar product

Xy) = x1y1 + ... + Xpyn -

In fact, every inner product space V is isometrically isomorphic to the inner
product space R”, for n the dimension of V. So the full topological subcategory
with objects the R” is a small skeleton of L.

Definition 1.1.1. An orthogonal space is a continuous functor ¥ : L —
T to the category of spaces. A morphism of orthogonal spaces is a natural
transformation. We denote the category of orthogonal spaces by spc.

The use of continuous functors from the category L to spaces has a long
history in homotopy theory. The systematic use of inner product spaces (as op-
posed to numbers) to index objects in stable homotopy theory seems to go back
to Boardman’s thesis [15]. The category L (or its extension that also contains
countably infinite-dimensional inner product spaces) is denoted .# by Board-
man and Vogt [16], and this notation is also used in [112]; other sources [102]
use the symbol 7. Accordingly, orthogonal spaces are sometimes referred to
as . -functors, .#-spaces or J-spaces. Our justification for using yet another
name is twofold: on the one hand, our use of orthogonal spaces comes with a
shift in emphasis, away from a focus on non-equivariant homotopy types, and
towards viewing an orthogonal space as representing compatible equivariant
homotopy types for all compact Lie groups. Secondly, we want to stress the
analogy between orthogonal spaces and orthogonal spectra, the former being
an unstable global world with the latter the corresponding stable global world.

Now we define our main new concept, the notion of ‘global equivalence’ be-
tween orthogonal spaces. We let G be a compact Lie group. By a G-represen-
tation we mean a finite-dimensional orthogonal representation, i.e., a real in-
ner product space equipped with a continuous G-action by linear isometries.
In other words, a G-representation consists of an inner product space V and a
continuous homomorphism p : G — O(V). In this context, and throughout
the book, we will often use without explicit mentioning that continuous homo-
morphisms between Lie groups are automatically smooth, see for example [28,
Prop.1.3.12]. For every orthogonal space Y and every G-representation V, the
value Y (V) inherits a G-action from the G-action on V and the functoriality of
Y. For a G-equivariant linear isometric embedding ¢ : V — W, the induced
map Y () : Y(V) — Y(W) is G-equivariant.
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We denote by
DF = (xeRF : (x,x)< 1} and AD* = {xeR* : (x,x) =1}

the unit disc in R¥ and its boundary, a sphere of dimension k — 1, respectively.
In particular, D° = {0} is a one-point space and D" = () is empty.

Definition 1.1.2. A morphism f : X — Y of orthogonal spaces is a global
equivalence if the following condition holds: for every compact Lie group G,
every G-representation V, every k > 0 and all continuous maps @ : 0D —
X(V)° and B : D¥ — Y(V)© such that Blyp = (V)¢ o a, there is a G-
representation W, a G-equivariant linear isometric embedding ¢ : V — W
and a continuous map A : D¥ —s X(W)? such that A|yp = X(¢)¢ o @ and such
that f(W)Y o A is homotopic, relative to dD, to Y(¢)¢ o 3.

In other words, for every commutative square on the left

G
oDk — » X(V)O oDk — > x(v)6 X x(wye
_ 7
mclj l Fv)© incll _ - . j FWYe
Df—— y(V)© D= Y(V)§ —— Y(W)O
B B Y(p)©

there exists the lift A on the right-hand side that makes the upper left triangle
commute on the nose, and the lower right triangle commute up to homotopy
relative to dDX. In such a situation we will often refer to the pair (a,f) as a
‘lifting problem’ and we will say that the pair (¢, 2) solves the lifting problem.

Example 1.1.3. If X = A and Y = B are the constant orthogonal spaces with
values the spaces A and B, and f = g the constant morphism associated with a
continuous map g : A — B, then § is a global equivalence if and only if for
every commutative square B

oDf —— A

/1
incll 1, g
7
7

D¥K— =B

there exists a lift A that makes the upper left triangle commute, and the lower
right triangle commute up to homotopy relative to AD*. But this is one of the
equivalent ways of characterizing weak equivalences of spaces, compare [114,
Sec. 9.6, Lemma]. So g is a global equivalence if and only if g is a weak equiv-
alence.

Remark 1.1.4. The notion of global equivalence is meant to capture the idea



1.1 Orthogonal spaces and global equivalences 5
that for every compact Lie group G, some induced morphism
hocolimy f(V) : hocolimy X(V) — hocolimy Y (V)

is a G-weak equivalence, where ‘hocolimy’ is a suitable homotopy colimit over
all G-representations V along all equivariant linear isometric embeddings. This
is a useful way to think about global equivalences, and it could be made pre-
cise by letting V run over the poset of finite-dimensional subrepresentations of
a complete G-universe and using the Bousfield-Kan construction of a homo-
topy colimit over this poset. Since the ‘poset of all G-representations’ has a
cofinal subsequence, called an exhaustive sequence in Definition 1.1.6, we can
also model the ‘homotopy colimit over all G-representations’ as the mapping
telescope over an exhaustive sequence. However, the actual definition we work
with has the advantage that it does not refer to universes and we do not have to
define or manipulate homotopy colimits.

In many examples of interest, all the structure maps of an orthogonal space
Y are closed embeddings. When this is the case, the actual colimit (over the
subrepresentations of a complete universe) of the G-spaces Y(V) serves the
purpose of a ‘homotopy colimit over all representations’, and it can be used to
detect global equivalences, compare Proposition 1.1.17 below.

We will now establish some useful criteria for detecting global equivalences.
We call a continuous map f : A — B an h-cofibration if it has the homotopy
extension property, i.e., given a continuous map ¢ : B — X and a homotopy
H : Ax[0,1] — X starting with ¢f, there is a homotopy H : Bx[0,1] — X
starting with ¢ such that Ho(fx[0, 1]) = H. Below we will write H, = H(—, 1) :
A — X. All h-cofibrations in the category of compactly generated spaces
are closed embeddings, compare Proposition A.31. The following somewhat
technical lemma should be well known, but I was unable to find a reference.

Lemma 1.1.5. Let A be a subspace of a space B such that the inclusion A —
B is an h-cofibration. Let f : X — Y be a continuous map and

H:Ax[0,1] — X and K : Bx[0,1] —= Y

homotopies such that K|sxj0,1; = fH. Then the lifting problem (Hy, Ko) has a
solution if and only if the lifting problem (Hy, K1) has a solution.

Proof The problem is symmetric, so we only show one direction. We suppose
that the lifting problem (Hj, Ky) has a solution consisting of a continuous map
A : B — X such that 1|4 = Hp and a homotopy G : B X [0, 1] — Y such that

Gy = fod, G, =Ky and (G)ls = foH,

for all ¢ € [0, 1]. The homotopy extension property provides a homotopy H’ :
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B x [0,1] — X such that
Hy =2 and H'laxpo) = H .
Then the map A’ = H| : B — X satisfies
Ala = (HDIa = H; .
We define a continuous map J : B x [0,3] — Y by

foH], forO0<r<1,
Ji = 4Gy for1 <t<2, and
K, > for2 <r<3.
In particular,
Jo = fold and J; = Ki;

so J almost witnesses the fact that A" solves the lifting problem (H}, K ), except
that J is not a relative homotopy.

We improve J to a relative homotopy from f o A’ to K. We define a contin-
uous map L : A x[0,3] x[0,1] — Y by

foH_, forO<t<sy,
L(—,t,5) = {foH,_y fors<t<3-s,and
foH,, for3—-s<t<3.
Then L(—, —, 0) is the constant homotopy at the map f o H;, and
L=, = 1) = Jlaxp3 : A%X[0,3] — Y.

Since the inclusion of A into B is an h-cofibration, the inclusion of BXx{0}Uaxqo)
A x [0, 1] into B X [0, 1] has a continuous retraction; hence the inclusion

B x {0} x [0, 1T Uagxqoyxo, A X [0, 1] x [0,1] — B x[0,1] x[0,1]

also has a continuous retraction. We abbreviate D = [0,3] x {1} U {0,3} x
[0, 1]; the pair of spaces ([0, 3] x [0, 1], D) is pair-homeomorphic to ([0, 1] x
[0, 1],{0} x [0, 1]). So the inclusion

BXDUgxpAX[0,3]1%x[0,1] — Bx[0,3]x[0,1]
has a continuous retraction. The map L and the map
JUconsty Uconsty, : BXD = Bx([0,3]x{1}U{0,3} x[0,1]) — Y

agree on A X D, so there is a continuous map L : B x [0, 3] x [0, 1] — Y such
that

L(-,-,1) =J, Llaxo3ix01 = L,
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and
I(=0,5) = fod and IL(-1,5) = K,
for all s € [0, 1]. The map J = L(—, —,0) : B x [0,3] —> Y then satisfies
Jlasio31 = L= = Olaxio3 = L(=,—,0),

which is the constant homotopy at the map foH;; so J is a homotopy (parametrized
by [0, 3] instead of [0, 1]) relative to A. Because

Jo = L(-,0,0) = foA and Jy = L(-,3,0) = K;,
the homotopy J witnesses that A’ solves the lifting problem (H,, K}). m]

Definition 1.1.6. Let G be a compact Lie group. An exhaustive sequence is a
nested sequence

VicV,c...cV, c...

of finite-dimensional G-representations such that every finite-dimensional G-
representation admits a linear isometric G-embedding into some V/,.

Given an exhaustive sequence {V;};>| of G-representations and an orthogonal
space Y, the values at the representations and their inclusions form a sequence
of G-spaces and G-equivariant continuous maps

Y(Vi) - YVp) — -+ — Y (V) — -

We denote by
tel,‘ Y(V,)

the mapping telescope of this sequence of G-spaces; this telescope inherits a
natural G-action.

We recall that a G-equivariant continuous map f : A — B between G-
spaces is a G-weak equivalence if for every closed subgroup H of G the map
ff . A" — BM of H-fixed-points is a weak homotopy equivalence (in the
non-equivariant sense).

Proposition 1.1.7. For every morphism of orthogonal spaces f : X — Y, the
following three conditions are equivalent.

(i) The morphism f is a global equivalence.

(i1) For every compact Lie group G, every G-representation V, every finite
G-CW-pair (B, A) and all continuous G-maps ¢ : A — X(V) and B :
B — Y(V) such that Bla = f(V)oa, there is a G-representation W, a G-
equivariant linear isometric embedding ¢ : V — W and a continuous
G-map A : B — X(W) such that A4 = X(¢) o a and such that f(W)o A
is G-homotopic, relative to A, to Y(p) o S.
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(iii) For every compact Lie group G and every exhaustive sequence {V;}i>1 of
G-representations, the induced map

tel,‘ f(V,) . tel,‘ X(Vl) — tel,' Y(V,)
is a G-weak equivalence.

Proof At various places in the proof we use without explicitly mentioning
it that taking G-fixed-points commutes with formation of the mapping tele-
scopes; this follows from the fact that taking G-fixed-points commutes with
pushouts along closed embeddings and with sequential colimits along closed
embeddings, compare Proposition B.1.

(i)=(ii) We argue by induction over the number of the relative G-cells in
(B,A). If B = A, then 4 = « solves the lifting problem, and there is nothing
to show. Now we suppose that A is a proper subcomplex of B. We choose a
G-CW-subcomplex B’ that contains A and such that (B, B’) has exactly one
equivariant cell. Then (B’, A) has strictly fewer cells, and the restricted equiv-
ariant lifting problem (@ : A — X(V),8 = Blp : B — Y(V)) has a solution
(p:V— U : B — X(U)) by the inductive hypothesis.

We choose a characteristic map for the last cell, i.e., a pushout square of
G-spaces

G/H x 0DF —*~ B’

incl l/ L incl

G/Hka—X>B

in which H is a closed subgroup of G. We arrive at the non-equivariant lifting
problem on the left:

()oy @) oy X"

Dk X(U)H dDF X(U)H = X( wHH
incll/ j fant mclj A_ - -7 jf(w)”
Df—— s Y(U)H DF=— Y(U)H Y(W)H

Y(@)"opf oy Y(p)opf o Y

Here i = y(eH,-) : D¥ — B"_ Since f is a global equivalence, there is
an H-equivariant linear isometric embedding ¢ : U — W and a continuous
map A : DX — X(W)# such that Alype = X@)H o () o y and fF(W) o A is
homotopic, relative dD*, to Y1) o Y (@) o8 o i, as illustrated by the diagram
on the right above. By enlarging W, if necessary, we can assume without loss
of generality that W is underlying a G-representation and even that ¢ is G-
equivariant.
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The G-equivariant extension of A
G/Hx D — X(W), (gH,x) + g-Ax)

and the map X(¢) o A’ : B — X(W) then agree on G/H X dDk, so they glue
to a G-map A: B — X(W). The pair (W : V — W,A: B — X(W)) then
solves the original lifting problem (a, 3).

(il)==(iii) We suppose that f satisfies (ii), and we let G be any compact Lie
group and {V;};>| an exhaustive sequence of G-representations. We consider an
equivariant lifting problem, i.e., a finite G-CW-pair (B, A) and a commutative
square:

A—" s tel; X(V))

incll Lleli f)

B —,B) tel,- Y(V,)

We show that every such lifting problem has an equivariant solution. Since B
and A are compact, there is an n > 0 such that @ has image in the truncated
telescope teljp ;) X(V;) and B has image in the truncated telescope teljg,,; Y(V;)
(see Proposition A.15 (i)). There is a natural equivariant homotopy from the
identity of the truncated telescope teljg ) X(V;) to the composite

A -
teljo,y X(V)) 5 X(V,) — telin X(V;) .

Naturality means that this homotopy is compatible with the same homotopy for
the telescope of the G-spaces Y(V;). Lemma 1.1.5 (or rather its G-equivariant
generalization) applies to these homotopies, so instead of the original lifting
problem we may solve the homotopic lifting problem

A—Y L X(V) — " el X(V))

incll fV) L Lleli Fi)

B — Y(v,) — tel; Y(V;)

where @’ is the composite of the projection telj ) X(V;) — X(V,,) with a,
viewed as a map into the truncated telescope, and similarly for 3.

Since f satisfies (ii), the lifting problem (¢’ : A — X(V,,),8 : B —
Y(V,)) has a solution after enlarging V, along some linear isometric G-em-
bedding. Since the sequence {V;};>; is exhaustive, we can take this embedding
as the inclusion i : V,, — V,, for some m > n, i.e., there is a continuous G-
map A : B — X(V,,) such that 4], = X(i)¢ o o’ and such that £(V,,)¢ o A is
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G-homotopic, relative A, to Y(i)C o B’, compare the diagram:

o X(@)

A X(V,) —z X(Vip)
incl ] lf(\/m)
B Y(Vy) — Y(Vi)

The composite

X(Vy) =2 X(V,) — 2 tel; X(V))

does not agree with i, : X(V,) — tel; X(V;), so the composite i, o1 : B —
tel; X(V;) does not quite solve the (modified) lifting problem (i, oa’, i, of’). But
there is a G-equivariant homotopy H : X(V,) X [0, 1] — tel; X(V;) between
im © X(i) and i,, and a similar homotopy K : Y(V,,) X [0, 1] — tel; Y(V;) for Y
instead of X. These homotopies satisfy

Ko (f(Va) x[0,1]) = (tel; f(Vi)) o H ,

so Lemma 1.1.5 implies that the modified lifting problem, and hence the orig-
inal lifting problem, has an equivariant solution.

(iii))==(1) We let G be a compact Lie group, V a G-representation, k > 0
and (a : 0D — X(V)°,B : D* — Y(V)%) a lifting problem, i.e., such that
Blapt = f(V)oa. We choose an exhaustive sequence {V;} of G-representations;
then we can embed V into some V, by a linear isometric G-map and thereby
assume without loss of generality that V = V,,.

Weleti, : X(V,) — tel; X(V;) and i,, : Y(V,)) — tel; Y(V;) be the canonical
maps. Since tel; f(V;) : tel; X(V;) — tel; Y(V)) is a G-weak equivalence, there
is a continuous map A : D — (tel; X(V;)) such that Alype = i
(tel; £(V;))%0 is homotopic, relative dD*, to i€ of. Since fixed-points commute
with mapping telescopes and since D* is compact, there is an m > n such
that A and the relative homotopy that witnesses the relation (tel; f(V;))® o 1 ~
i% o 8 both have image in tely,,; X(V;)C, the truncated telescope of the G-fixed-
points. The following diagram commutes

o« and

X(incl)®
X(Vy)¢ —— teljg,n X(V)® —— teljgn X(V))¢ —= X(V,))°
’ incl ’ proj

f(Vn)Gj telf(Vi)Gl ltelf(Vx)G Lf(VM)G
proj

Y(V,)¢ —= > teljgn Y(V)C —2 > teljg, Y(Vi)C Y(V,)¢

Y(incl)¢

where the right horizontal maps are the projections of the truncated telescope to
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the last term. So projecting from teljg .1 X(V;) to X(V,,)¢ and from teljo,1 Y(Vi)¢
to Y(V,,)¢ produces the desired solution to the lifting problem. O

We establish some more basic facts about the class of global equivalences.
A homotopy between two morphisms of orthogonal spaces f, f' : X — Yisa
morphism

H: Xx[0,1] — Y
such that H(—,0) = f and H(—, 1) = f'.

Definition 1.1.8. A morphism f : X — Y of orthogonal spaces is a homotopy
equivalence if there is a morphism g : ¥ — X such that gf and fg are
homotopic to the respective identity morphisms. The morphism f is a strong
level equivalence if for every compact Lie group G and every G-representation
V the map f(V)¢ : X(V)¢ — Y(V)Y is a weak equivalence. The morphism
f is a strong level fibration if for every compact Lie group G and every G-
representation V the map f(V)¢ : X(V)¢ — Y(V)Y is a Serre fibration.

If f,f" : X — Y are homotopic morphisms of orthogonal spaces, then
the maps f(V)Y, f/(V)® : X(V)¢ — Y(V)Y are homotopic for every com-
pact Lie group G and every G-representation V. So if f is a homotopy equiv-
alence of orthogonal spaces, then the map f(V)¢ : X(V)° — Y (V)% is a
non-equivariant homotopy equivalence for every G-representation V. So ev-
ery homotopy equivalence is in particular a strong level equivalence. By the
following proposition, strong level equivalences are global equivalences.

A continuous map ¢ : A — B is a closed embedding if it is injective and
a closed map. Such a map is then a homeomorphism of A onto the closed
subspace ¢(A) of B. If a compact Lie group G acts on two spaces A and B
and ¢ : A — B is a G-equivariant closed embedding, then the restriction
@Y : AS — BY to G-fixed-points is also a closed embedding.

We call a morphism f : A — B of orthogonal spaces an h-cofibration if
it has the homotopy extension property, i.e., given a morphism of orthogonal
spaces ¢ : B — X and a homotopy H : AX[0, 1] — X starting with ¢ f, there
is a homotopy H : Bx[0, 1] — X starting with ¢ such that Ho(fx[0, 1]) = H.

Proposition 1.1.9. (i) Every strong level equivalence is a global equiva-
lence.

(i1) The composite of two global equivalences is a global equivalence.

(iii) If f, g and h are composable morphisms of orthogonal spaces such that
hg and gf are global equivalences, then f,g,h and hgf are also global
equivalences.

(iv) Every retract of a global equivalence is a global equivalence.

(v) A coproduct of any set of global equivalences is a global equivalence.
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(vi) A finite product of global equivalences is a global equivalence.

(vii) For every space K the functor — X K preserves global equivalences of
orthogonal spaces.

(viii) Let e, : X, — Xy and f, : Y, — Y, be morphisms of orthogonal
spaces that are objectwise closed embeddings, forn > 0. Let Y, : X, —
Y, be global equivalences of orthogonal spaces that satisfy Y,+1 © e, =
fu oYy, for all n > 0. Then the induced morphism Yo @ Xoo — Yoo
between the colimits of the sequences is a global equivalence.

(ix) Let f, : Y, — Y, be a global equivalence of orthogonal spaces that
is objectwise a closed embedding, for n > 0. Then the canonical mor-
phism f : Yo — Yo to the colimit of the sequence {f,},>0 is a global
equivalence.

(x) Let

C<g—A—f>-B

C/_eA/T)B/
8

be a commutative diagram of orthogonal spaces such that f and f’ are
h-cofibrations. If the morphisms «, 3 and y are global equivalences, then
so is the induced morphism of pushouts

’)/Uﬁ . CUAB — C/UA/B/.

(xi) Let
S

|

O~

A
|
c

be a pushout square of orthogonal spaces such that f is a global equiva-
lence. If, in addition, f or g is an h-cofibration, then the morphism k is a
global equivalence.

(xii) Let

!

|

Fox
s
Y

N<——*

|

h

be a pullback square of orthogonal spaces in which f is a global equiva-
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lence. If, in addition, f or h is a strong level fibration, then the morphism
g is also a global equivalence.

Proof (i) We let f : X — Y be a strong level equivalence, G a compact
Lie group, V a G-representation and « : dD¥ — X(V)¢ and g : D¥ —
Y (V)¢ continuous maps such that f(V)Coa= Blapr- Since f is a strong level
equivalence, the map FONC : X(V)® — Y(V)C is a weak equivalence, so
there is a continuous map A : DF — X(V) such that A|gpx = o and f(V)% o A
is homotopic to 3 relative to AD*. So the pair (Idy, 2) solves the lifting problem,
and hence f is a global equivalence.

(i) Welet f : X — Y and g : Y — Z be global equivalences, G a compact
Lie group, (B, A) a finite G-CW-pair, V a G-representation and @ : A — X(V)
and 8 : B — Z(V) continuous G-maps such that (gf)(V)oa = B|s. Since gis a
global equivalence, the equivariant lifting problem (f(V) o «, 8) has a solution
(p:V— W, 1: B— Y(W)) such that

Ay = Y(@o f(V)oa = f(W)oX(p)oa,

and g(W) o A is homotopic to Z(p) o S relative to A. Since f is a global equiv-
alence, the equivariant lifting problem (X(¢) o @, 1) has a solution ( : W —
U, I’ : B— X(U)) such that

Xla = XW) o X(p)oa

and such that f(U)o A’ is G-homotopic to Y (i) o A relative to A. Then (gf)(U)o
A’ is G-homotopic, relative to A, to

gU)oY(W)od = Z(Y)og(W)oa

which in turn is G-homotopic to Z(y¢)of3, also relative to A. So the pair (Y, 1”)
solves the original lifting problem for the morphism gf : X — Z.
(dii))Weletf: X —Y,g:Y — Zand h : Z — Q be the three compos-
able morphisms such that gf : X — Z and hg : Y — Q are global equiv-
alences. We let G be a compact Lie group and {V;};>; an exhaustive sequence
of G-representations. Evaluating everything in sight on the representations and
forming mapping telescopes yields three composable continuous G-maps

tel; f(Vi) tel; g(Vi) tel; h(V;)
tel; X(V;) ——— tel; Y(V;,) —— tel; Z(V;)) —— tel; Q(V)) .

Proposition 1.1.7 shows that the G-maps

(tel; g(V)) o (tel; f(V))) = teli(gf)(V;)) and
(tel; A(V))) o (tel; g(V))) = teli(hg)(V;)
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are G-weak equivalences. Since G-weak equivalences satisfy the 2-out-of-6-
property, we conclude that the G-maps tel; f(V;), tel; g(V;), tel; A(V;) and

(tel; h(V)) o (tel; g(V))) o (tel; f(V)) = teli(hg (V)

are G-weak equivalences. Another application of Proposition 1.1.7 then shows
that f, g, h and hgf are global equivalences.

(iv) Let g be a global equivalence and f a retract of g. So there is a commu-
tative diagram

1 r

be
<

8

~
N ~<~—
-~

"<<\—><

=~

— )Y ——
J s
such that i = Idy and sj = Idy. We let G be a compact Lie group, V a G-
representation, (B, A) a finite G-CW-pairanda : A — X(V)and 8 : B —
Y (V) continuous G-maps such that f(V) o @ = B|4. Since g is a global equiva-

lence and

gV)oiV)oa = j(V)o f(V)oa = (j(V)opP)la,

there is a G-equivariant linear isometric embedding ¢ : V — W and a contin-
uous G-map A : B — X(W) such that 4|, = X(¢) 0 i(V) o @ and g(W) o A is
G-homotopic to Y(¢) o j(V) o B relative to A. Then

(rW)oDly = r(W)oX(p)oi(V)oa = X(p)or(V)oiV)oa = X(p)oa

and

JW)yor(Wyod = s(W)og(W)oa
is G-homotopic to
sS(W)yoY(p)o j(V)o = Y(p)os(V)o j(V)oB = Y(p)op

relative to A. So the pair (¢, /(W) o 1) solves the original lifting problem for
the morphism f : X — Y; thus f is a global equivalence.

Part (v) holds because the disc D¥ is connected, so any lifting problem for a
coproduct of orthogonal spaces is located in one of the summands.

For part (vi) it suffices to consider a product of two global equivalences
f:X—Yand f' : X’ — Y’. Because global equivalences are closed under
composition (part (ii)) and f X f' = (f X Y’) o (X X f7), it suffices to show
that for every global equivalence f : X — Y and every orthogonal space Z
the morphism f X Z : X X Z — Y X Z is a global equivalence. But this is
straightforward: we let G be a compact Lie group, V a G-representation, (B, A)
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a finite G-CW-pairand @ : A — X xZ)(V)and B : B — (Y X Z)(V)
continuous G-maps such that (f X Z)(V) o @ = B|4. Because

XX Z)V) = X(V)x Z(V)

and similarly for (¥ x Z)(V), we have ¢ = (a1, @) and 8 = (8;,8>) for con-
tinuous G-maps @1 : A — X(V),ar : A — Z(V), 51 : B — Y(V) and
B> : B — Z(V). The relation (f X Z)(V) o (a1,a2) = (B1,62)|la shows that
ay = (By)la. Since f is a global equivalence, the equivariant lifting problem
(a1,B1) for f(V) has a solution (¢ : V — W, 1 : B — X(W)) such that
Aa = X(¢) o a; and f(W) o A is G-homotopic to Y(¢) o B, relative to A. Then
the pair (g, (1, Z(¢)oB,)) solves the original lifting problem, so fxZ is a global
equivalence.

(vii) If X is an orthogonal space and K a space, then X X K is the product of
X with the constant orthogonal space with values K. So part (vii) is a special
case of (vi).

(viii) We let G be a compact Lie group, V a G-representation, (B, A) a finite
G-CW-pairand @ : A — X(V)and 8 : B — Y (V) continuous G-maps
such that Yo (V) oa = Bls : A — Yo(V). Since A and B are compact and
X(V) and Y, (V) are colimits of sequences of closed embeddings, the maps «
and g factor through maps

a: A — X,(V) and B : B — Y,V)

for some n > 0, see Proposition A.15 (i). Since the canonical maps X, (V) —
Xo(V) and Y, (V) — Y. (V) are injective, & and j are again G-equivariant.
Moreover, the relation (V) o @ = Bl4 : A — Y, (V) holds because it holds
after composition with the injective map Y,(V) — Y (V).

Since ¢, is a global equivalence, there is a G-equivariant linear isometric
embedding ¢ : V — W and a continuous G-map 4 : B — X,(W) such
that A4 = X,(¢) o & and ,(W) o A is G-homotopic to Y,(¢) o B relative to
A. We let I’ : B — X (W) be the composite of A and the canonical map
X,(W) — X (W). Then the pair (¢, A’) is a solution for the original lifting
problem, and hence ¥, : Xoo — Y is a global equivalence.

(ix) This is a special case of part (viii) where we set X,, = Yy, e, = Idy,
and ¥, = fy—-10---0 fo : Yo — Y,. The morphism ¢, is then a global
equivalence by part (ii), and Y is a colimit of the constant first sequence. Since
the morphism i/, induced on the colimits of the two sequences is the canonical
map Yy — Yo, part (viii) proves the claim.

(x) Let G be a compact Lie group. We consider an exhaustive sequence
{Vi}i>1 of finite-dimensional G-representations. Since @, and y are global
equivalences, the three vertical maps in the following commutative diagram
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of G-spaces are G-weak equivalences, by Proposition 1.1.7:

tel; C(Vy) <=8 o1, A(vy) — Y e, BV

tel y(V;) L ltel a(Vy) Ltel BV

teli C’(Vl) <~ tel,- A,(V,) e teli B’(Vl)
tel g'(V;) tel (V)
Since mapping telescopes commute with product with [0, 1] and retracts, the
maps tel; £(V;) and tel; f'(V;) are h-cofibrations of G-spaces. The induced map
of the horizontal pushouts is thus a G-weak equivalence by Proposition B.6.
Since formation of mapping telescopes commutes with pushouts, the map

teli(y UB)(V)) : teli(C Uy B)(V)) — teli(C" Ua B')(Vi)

is a G-weak equivalence. The claim thus follows by another application of the
telescope criterion for global equivalences, Proposition 1.1.7.
(xi) In the commutative diagram

C<S5—A——24

| 1)

C<=——A——B
8 f
all vertical morphisms are global equivalences. If f is an h-cofibration, we
apply part (x) to this diagram to get the desired conclusion. If g is an h-
cofibration, we apply part (x) after interchanging the roles of left and right
horizontal morphisms.

(xii) We let G be a compact Lie group, V a G-representation, (B, A) a finite
G-CW-pairand @ : A — P(V) and 8 : B — Z(V) continuous G-maps such
that g(V) o @ = Bla. Since f is a global equivalence, there is a G-equivariant
linear isometric embedding ¢ : V — W and a continuous G-map 4 : B —
X(W) such that 2|4 = X(¢) o k(V) o @ and such that f(W) o A is G-homotopic,
relative to A, to Y(¢) o (V) o B. We let H : B x [0,1] — Y(W) be a relative
G-homotopy from Y(¢) o h(V) o B = (W) o Z(¢) o B to f(W) o 1. Now we
distinguish two cases.

Case 1: The morphism £ is a strong level fibration. We can choose a lift A
in the square

BX0 Uz Ax[0,1] — 228 7(w)

l _ -~ n ih(vw

Bx[0,1] — Y(W)
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where K : AX[0, 1] — Z(W) is the constant homotopy from g(W)o P(¢p)oa to
itself. Since the square is a pullback and hA(W)o H(—, 1) = H(—,1) = f(W)o A,
there is a unique continuous G-map A : B — P(W) that satisfies

gW)od = H(-,1) and kWyod = A.
The restriction of A to A satisfies

gW)odly = H(=,Dlx = gW)oP(p)oa  and
k(Wyodly = A = X(@)ok(V)oa = k(W)oP(p)oa;

the pullback property thus implies that A|, = P(p) o a.

Finally, the composite g(W) o A is homotopic, relative A and via H, to
H(-,0) = Z(p) o B. This is the required lifting data, and we have thus veri-
fied the defining property of a global equivalence for the morphism g.

Case 2: The morphism f is a strong level fibration. The argument is similar
as in the first case. Now we can choose a lift H” in the square

Bx 1 Upx AX[0,1] K = X(W)
~j == if(vw
- - - H
Bx[0,1] — Y(W)

where K’ : A% [0, 1] — X(W) is the constant homotopy from X(¢) o k(V) o
to itself. Since the square is a pullback and f(W) o H'(-,0) = H(-,0) =
h(W) o Z(¢) o B, there is a unique continuous G-map A : B — P(W) that
satisfies
gW)od = Z(p)of and k(W)od = H'(-,0).

The restriction of A to A satisfies

gW)o s

k(W) o Al

Z(p)og(V)oa = g(W)oP(p)oa  and
H'(=,0)s = X(@)ok(V)oa = k(W)o P(p)oa.

The pullback property thus implies that A, = P(p)oa. Since g(W)o 1 = Z(p)o
B3, this is the required lifting data, and we have verified the global equivalence
criterion of Proposition 1.1.7 (ii) for the morphism g. O

The restriction to finite products is essential in part (vi) of the previous

Proposition 1.1.9; i.e., an infinite product of global equivalences need
not be a global equivalence. The following simple example illustrates this. We
let Y,, denote the orthogonal space with

0  ifdim(V) < n, and

Y.(V) = { .
{«} if dim(V) > n.
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The unique morphism Y, — Y} is a global equivalence for every n > 0. How-
ever, the product [],¢ ¥, is the empty orthogonal space, whereas the product
[ 1,50 Yo is a terminal orthogonal space. The unique morphism from the initial
(i.e., empty) to a terminal orthogonal space is not a global equivalence.

The following proposition provides a lot of flexibility for changing an or-
thogonal space into a globally equivalent one by modifying the input variable.
We will use it multiple times in this book.

Theorem 1.1.10. Let F : L — L be a continuous endofunctor of the category
of linear isometries and i : 1d — F a natural transformation. Then for every
orthogonal space Y the morphism

Yoi:Y — YoF
is a global equivalence of orthogonal spaces.

Proof In the first step we show an auxiliary statement. We let V be an inner
product space and z € F(V) an element that is orthogonal to the subspace
iy(V), the image of the linear isometric embedding iy : V — F(V). We claim
that for every linear isometric embedding ¢ : V — W the element F(¢)(z) of
F(W) is orthogonal to the subspace iy (W). To prove the claim we write any
given element of W as ¢(v) + y for some v € V and y € W orthogonal to ¢(V).
Then

(F(@)(@),iw(e()) = (F(p)), Fl)(iv(v)) = (ziv(v)) = 0

by the hypotheses on z. Now we define A € O(W) as the linear isometry that is
the identity on ¢(V) and the negative of the identity on the orthogonal comple-
ment of ¢(V). Then A o ¢ = ¢ and

(F(@)(2), iw(y)) = (FA)F(p)(2), F(A)(iw ()
(F(AR)(2), iw(A(»)) = —(F(@)(@),iw())

and hence (F(¢)(2), iw(y)) = 0. Altogether this shows that (F(¢)(2), iw(e(v) +
y)y = 0, which establishes the claim.

Now we consider a compact Lie group G, a G-representation V, a finite G-
CW-pair (B, A) and a lifting problem @ : A — Y(V) and 8 : B — Y(F(V))
for (Y oi)(V). Then S|4 = Y(iy) oa by hypothesis, and we claim that Y (ir) o
is G-homotopic to Y(F(iy)) o 8 = (Y o F)(iy) o B, relative A; granting this for
the moment, we conclude that the pair (iy : V — F(V), ) solves the lifting
problem.

It remains to construct the relative homotopy. The two embeddings

F(y), iryy : F(V) — F(F(V))
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are homotopic, relative to iy : V — F(V), through G-equivariant isometric
embeddings, via

H: FOV)x[0.1] —  FF(V))
v+w, 1) — F(iy)(v) + t- ip(v)(W) + V1-£. F(iy)(w),

where v € iy(V) and w is orthogonal to iy(V). The verification that H(—,?) :
F(V) — F(F(V)) is indeed a linear isometric embedding for every ¢ € [0, 1]
uses that ir(yy = F(iy) on the subspace iy(V) of F(V), and that ipq,)(w) is
orthogonal to F(iy)(w), by the claim proved above. The continuous functor
Y takes this homotopy of equivariant linear isometric embeddings to a G-
equivariant homotopy Y(H(—, 1)) from Y(F(iy)) to Y(irv,), relative to Y(iy).
Composing with 8 gives the required relative G-homotopy from Y(F(iy)) o 8
to Y(iF(V)) op. [m]

Example 1.1.11 (Additive and multiplicative shift). Here are some typical ex-
amples to which the previous theorem applies. Every inner product space W
defines an ‘additive shift functor’ and a ‘multiplicative shift functor’ on the
category of orthogonal spaces, defined by pre-composition with the continu-
ous endofunctors

-oW : L — L and -W : L — L.

In other words, the additive and multiplicative W-shift of an orthogonal space
Y have values

(sh¥Y)(V) = Y(Ve W) and  (sh¥Y)V) = Y(VOW).

Here, and in the rest of the book, we endow the tensor product V @ W of two
inner product spaces V and W with the inner product characterized by

YeOw,vew) = (v,V) - (w,w)

for all v,v € V and w,w € W. Another way to say this is that for every or-
thonormal basis {b;};; of V and every orthonormal basis {d;} jc; of W the fam-
ily {b; ® d;}(; jerxs forms an orthonormal basis of V ® W. Theorem 1.1.10 then
shows that the morphism ¥ — shg/ Y given by applying Y to the first summand
embedding V — V@ W is a global equivalence. To get a similar statement for
the multiplicative shift we have to assume that W # 0; then for every vector
w € W of length 1 the map

V > VW, vi—> vew

is a natural linear isometric embedding. So Theorem 1.1.10 shows that the
morphism Y(-®w) : ¥ — shg Y is a global equivalence.
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For the following discussion of universes we recall that a finite group has
finitely many isomorphism classes of irreducible orthogonal representations,
and a compact Lie group of positive dimension has countably infinitely many
such isomorphism classes. I have not yet found an explicit reference with a
proof of this well-known fact, but one can argue as follows.

We first consider unitary representations of G. If G is finite, then the charac-
ters of irreducible unitary representations form a basis of the C-vector space of
conjugation invariant C-valued functions on G. So the number of isomorphism
classes of irreducible unitary representations agrees with the number of conju-
gacy classes of elements of G, and is thus finite. If G is of positive dimension,
then the characters of irreducible unitary representations form an orthonor-
mal basis of the complex Hilbert space of square integrable (with respect to
the Haar measure), conjugation invariant functions on G, see for example [91,
§11, Thm. 2]. Since G is compact and of positive dimension, this Hilbert space
is infinite-dimensional and separable, so there are countably infinitely many
isomorphism classes of irreducible unitary representations.

To treat the case of orthogonal representations of G, we recall from [28, II
Prop. 6.9] that complexification can be used to construct a map from the set of
isomorphism classes of irreducible orthogonal representations to the set of iso-
morphism classes of irreducible unitary representations of G. There is a caveat,
however: the complexification of an irreducible orthogonal representation need
not be irreducible. More precisely, the reducibility behavior under complexifi-
cation depends on the ‘type’ of the irreducible orthogonal representation A. By
Schur’s lemma, the endomorphism algebra Homg(/l, A) is a finite-dimensional
skew-field extension of R, hence isomorphic to R, C or H.

o If Homg(/l, A) is isomorphic to R, then A is of real type. In this case the
complexification A¢ is irreducible as a unitary G-representation.

o If Homg(/l, A) is isomorphic to C or H, then A is of complex type or of
quaternionic type, respectively. In this case there is an irreducible unitary
G-representation p such that A¢ is isomorphic to the direct sum of p and its
conjugate p. If A is of complex type, then p is not isomorphic to its conju-
gate; if A is of quaternionic type, then p is self-conjugate, i.e., isomorphic to
its conjugate.

Since the underlying orthogonal representation of A¢ is isomorphic to the di-
rect sum of two copies of A, two non-isomorphic irreducible orthogonal rep-
resentations cannot become isomorphic after complexification. So the above
construction gives an injective map from the set of irreducible orthogonal rep-
resentations to the set of irreducible unitary representations. Altogether this
shows that there at most countably many isomorphism classes of irreducible
orthogonal representations of a compact Lie group.
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Definition 1.1.12. Let G be a compact Lie group. A G-universe is an orthogo-
nal G-representation U of countably infinite dimension with the following two
properties:

o the representation U has non-zero G-fixed-points,
e if a finite-dimensional G-representation V embeds into U, then a countable
infinite direct sum of copies of V also embeds into U.

A G-universe is complete if every finite-dimensional G-representation embeds
into it.

A G-universe is characterized, up to equivariant linear isometry, by the set of
irreducible G-representations that embed into it. We let A = {1} be a complete
set of pairwise non-isomorphic irreducible G-representations that embed into
U. The first condition says that A contains a trivial 1-dimensional representa-
tion, and the second condition is equivalent to the requirement that

u=PPa.

AeA N

Moreover, U is complete if and only if A contains (representatives of) all irre-
ducible G-representations. Since there are only countably many isomorphism
classes of irreducible orthogonal G-representations, a complete G-universe ex-
ists.

Remark 1.1.13. We let H be a closed subgroup of a compact Lie group G. We
will frequently use the fact that the underlying H-representation of a complete
G-universe U is a complete H-universe. Indeed, if U is an H-representation,
then there is a G-representation V and an H-equivariant linear isometric em-
bedding U — V, see for example [131, Prop. 1.4.2] or [28, III Thm.4.5].
Since V embeds G-equivariantly into U, the original representation U embeds
H-equivariantly into U.

In the following, for every compact Lie group G we fix a complete G-
universe Ug. We let s(Ug) denote the poset, under inclusion, of finite-dimensio-
nal G-subrepresentations of U.

Definition 1.1.14. For an orthogonal space Y and a compact Lie group G we
define the underlying G-space as

Y(Ug) = colimyeya,) Y(V),
the colimit of the G-spaces Y(V).

Remark 1.1.15. The underlying G-space Y(U;) can always be written as a
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sequential colimit of values of Y. Indeed, we can choose a nested sequence of
finite-dimensional G-subrepresentations

Vo 2V €V, C -

whose union is all of U. This is then in particular an exhaustive sequence in
the sense of Definition 1.1.6. Since the subposet {V,},>o is cofinal in s(Ug),
the colimit of the functor V +— Y(V) over s(U;) is also a colimit over the
subsequence Y (V).

If the group G is finite, then we can define a complete universe as

Us = @PG,
N

a countably infinite sum of copies of the regular representation pg = R[G],
with G as orthonormal basis. Then U is filtered by the finite sums 7 - pg, and
we get

Y(Ug) = colim, Y(n - pc) ,

where the colimit is taken along the inclusions n - pg — (n + 1) - pg that miss
the final summand.

Definition 1.1.16. An orthogonal space Y is closed if it takes every linear iso-
metric embedding ¢ : V — W of inner product spaces to a closed embedding
Y(p): Y(V) — Y(W).

In particular, for every closed orthogonal space Y and every G-equivariant
linear isometric embedding ¢ : V — W of G-representations, the induced
map on G-fixed-points Y(¢)¢ : Y(V)¢ — Y(W)C is also a closed embedding.

Proposition 1.1.17. Let f : X — Y be a morphism between closed orthogo-
nal spaces. Then f is a global equivalence if and only if for every compact Lie
group G the map

f(U? = X(Uc) — Y (U
is a weak equivalence.

Proof The poset s(Ug) has a cofinal subsequence, so all colimits over s(Ug)
can be realized as sequential colimits. The claim is then a straightforward con-
sequence of the fact that fixed-points commute with sequential colimits along
closed embeddings (see Proposition B.1 (ii)) and continuous maps from com-
pact spaces such as D and dD* to sequential colimits along closed embeddings
factor through a finite stage (see Proposition A.15 (i)). m]

Now we turn to semifree orthogonal spaces. The basic building blocks of
global homotopy theory, the global classifying spaces of compact Lie groups
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(Definition 1.1.27), are special cases of this construction. Free and semifree or-
thogonal spaces are made from spaces of linear isometric embeddings, so we
start by recalling various properties of certain spaces of linear isometric em-
beddings. We consider two compact Lie groups G and K, a finite-dimensional
G-representation V, and a K-representation U, possibly of countably infinite
dimension. If U is infinite-dimensional, we topologize the space L(V, U) of
linear isometric embeddings as the filtered colimit of the spaces L(V, U), taken
over the poset of finite-dimensional subspaces U of U. The space L(V, U) in-
herits a continuous left K-action and a compatible continuous right G-action
from the actions on the target and source, respectively. We turn these two ac-
tions into a single left action of the group K X G by defining

((k,g) - @) = k-@(g™" -v) (1.1.18)

for ¢ € L(V,U) and (k,g) € K X G. We recall that a continuous (K X G)-
equivariant map is a (K X G)-cofibration if it has the left lifting property with
respect to all morphisms of (K X G)-spaces f : X — Y such that the map
fT + X' — YT is a weak equivalence and a Serre fibration for every closed
subgroup I' of K X G.

Proposition 1.1.19. Letr G and K be compact Lie groups, V a finite-dimensional
G-representation, and U a K-representation of finite or countably infinite di-
mension.

(1) For every finite-dimensional K-subrepresentation U of U, the inclusion
induces a (K X G)-cofibration

LV, U) — L(V,U)
and a K-cofibration of orbit spaces
LV,U)/G — L(V,U)/G .

(1) The (K xG)-space L(V,U) is (K X G)-cofibrant. The K-space L(V,U)/G
is K-cofibrant.

Proof (i) We consider two natural numbers m, n > 0. The space L(V, R"*") is
homeomorphic to the Stiefel manifold of dim(V)-frames in R™*", and is hence
a compact smooth manifold, and the action of O(m) x O(n) X G is smooth. IlI-
man’s theorem [84, Cor. 7.2] thus provides an (O(m) X O(n) X G)-CW-structure
on L(V,R™"™), In particular, L(V, R™*") is cofibrant as an (O(m) x O(n) X G)-
space. The group N = exO(n)Xe is a closed normal subgroup of O(m)x O(n)x
G, so the inclusion of the N-fixed-points into L(V, R"*") is an (O(m)xO(n)xG)-
cofibration (compare Proposition B.12). The map

L(V,R™) — L(V,R™"), (1.1.20)
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induced by the embedding R” — R™*" as the first m coordinates, is a home-
omorphism from L(V,R™) onto the N-fixed-points of L(V,R"*"); so the map
(1.1.20) is an (O(m) x O(n) X G)-cofibration.

Now we can prove the proposition when U is finite-dimensional. We can
assume that U is R™*" with the standard scalar product, and that U is the
subspace in which the last n coordinates vanish. The K-action on U is given by
a continuous homomorphism ¢ : K — O(m+n). Since U is a K-subrepresen-
tation, the image of  must be contained in the subgroup O(m) x O(n). The
(KxG)-action on the map (1.1.20) is then obtained by restriction of the (O(m)x
O(n) x G)-action along the homomorphism

YUxId : KxG — O(m)x 0(n) xG .

Restriction along any continuous homomorphism between compact Lie groups
preserves cofibrations by Proposition B.14 (i), so the map (1.1.20) is a (K X G)-
cofibration by the first part.

Now we treat the case when the dimension of U is infinite. We choose an
exhausting nested sequence of K-subrepresentations

U=Uyc U cU,ccC....

Then all the morphisms L(V, U,_;) — L(V, U,) are (K X G)-cofibrations by
the above. Since cofibrations are closed under sequential composites, the mor-
phism

L(V,Up) — colim, L(V,U,) = L(V,U)

is also a (K X G)-cofibration.
Applying Proposition B.14 (iii) to the normal subgroup exXG of K X G shows
that the functor

(exG)\- : (KxGT — KT

takes (K X G)-cofibrations to K-cofibrations. This proves the second claim.
(i1) This is the special case U = {0}. The space L(V,{0}) is either empty or
consists of a single point; in either case L(V, {0}) is (K X G)-cofibrant. Part (i)
then implies that L(V, U) is (K X G)-cofibrant and L(V, U)/G is K-cofibrant.
[m}

The following fundamental contractibility property goes back, at least, to
Boardman and Vogt [16]. The equivariant version that we need can be found
in [100, Lemma II 1.5].

Proposition 1.1.21. Let G be a compact Lie group, V a G-representation and
U a G-universe such that V embeds into U. Then the space L(V, U), equipped
with the conjugation action by G, is G-equivariantly contractible.
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Proof We start by showing that the space LY(V,U) of G-equivariant linear
isometric embeddings is weakly contractible. We let U be a G-representation
of finite or countably infinite dimension. Then the map

H : [0,11xL°(V,U) — LE(V, U V)

defined by
Ht,p)(v) = (t o), V1 -1 -v)

is a homotopy from the constant map with value i : V — U @ V to the map
i1 o — (post-composition with i; : U — U S V).

Since V embeds into U and U is a G-universe, it contains infinitely many
orthogonal copies of V. In other words, we can assume that

U=UsV”
for some G-representation U’. Then
LS(V,U) = LV, U & V™) = colim,so LE(V, U & V") ;

the colimit is formed along the post-composition maps with the direct sum
embedding U’ & V" — U’ ®V"*!. Every map in the colimit system is a closed
embedding and homotopic to a constant map, by the previous paragraph. So
the colimit is weakly contractible.

Applying the previous paragraph to a closed subgroup H of G shows that
the fixed-point space L (V, U/) is weakly contractible; in other words, L(V, U)
is G-weakly contractible. The space L(V, U) comes with a (G X G)-action as
in (1.1.18), and it is (G X G)-cofibrant by Proposition 1.1.19 (ii). Then L(V, U)
is also cofibrant as a G-space for the diagonal action, by Proposition B.14 (i).
Since L(V, U) is G-cofibrant and weakly G-contractible, it is actually equiv-
ariantly contractible. O

Now we turn to semifree orthogonal spaces.

Construction 1.1.22. Given a compact Lie group G and a G-representation V/,
the functor

evgy : spc — GT
that sends an orthogonal space Y to the G-space Y (V) has a left adjoint

Loy : GT — spc. (1.1.23)
To construct the left adjoint we note that G acts from the right on L(V, W) by

(-2 = ¢(gv)
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forp e L(V,W), g € G and v € V. Given a G-space A, the value of L yA at an
inner product space W is

LoyAW) = L(V,W)xc A = (I(V,W) X A) /(¢g,a) ~ (¢, 8a) .

We refer to Lg vA as the semifree orthogonal space generated by A at (G, V).
We also denote by L,y the orthogonal space with

Loy(W) = L(V,W)/G .

So Lg,y is isomorphic to the semifree orthogonal space generated at (G, V) by
a one-point G-space.

The ‘freeness’ property of L vA is a consequence of the enriched Yoneda
lemma, see Remark C.2 or [90, Sec. 1.9]; it means explicitly that for every or-
thogonal space Y and every continuous G-map f : A — Y(V) there is a unique
morphism f* : LgyA — Y of orthogonal spaces such that the composite

[1d.-] )
A—— L(V,V)Xg A = (LgyvA)V) — Y(V)

is f. Indeed, the map f*(W) is the composite

Id Y] Y y
LIV, W) x6 A 20 Leviwy xg vv) 222790y
Example 1.1.24. For every compact Lie group G, every G-representation V
and every G-space A the semifree orthogonal space L¢ yA is closed. To see
this we let ¢ : U — W be a linear isometric embedding; since L(V, U) is
compact, the continuous injection

LV.g) : L(V,U) — L(V.W)

is a closed embedding. So the map L(V, ¢) X A is a closed embedding as well.
The orbit map

LV, xgA : L(V,U)XgA — L(V,W) xg A
is then a closed embedding by Proposition B.13 (iii).

The next proposition identifies the fixed-point spaces of a semifree orthogo-
nal space L y. A certain family #(K; G) of subgroups (which we call ‘graph
subgroups’) of K X G arises naturally.

Definition 1.1.25. Let K and G be compact Lie groups. The family ¥ (K; G)
of graph subgroups consists of those closed subgroups I' of K X G that intersect
1 X G only in the neutral element (1, 1).
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The name ‘graph subgroup’ stems from the fact that ¥ (K; G) consists pre-
cisely of the graphs of all ‘subhomomorphisms’, i.e., continuous homomor-
phisms @« : L — G from a closed subgroup L of K. Clearly, the graph
I'@) = {(l,a(D) | | € L} of every such homomorphism belongs to ¥ (K; G).
Conversely, for I' € ¥(K; G) we let L < K be the image of I" under the projec-
tion K X G — K. Since I' N (1 X G) = {(1, 1)}, every element [ € L then has a
unique preimage (I, @(l)) under the projection, and the assignment [ — a(l) is
a continuous homomorphism from L to G whose graph is I.

We recall that a universal G-space for a family ¥ of closed subgroups is a
cofibrant G-space E such that

o all isotropy groups of E belong to the family ¥, and
e for every H € ¥ the fixed-point space E is weakly contractible.

If V and W are G-representations, then restriction of a linear isometry from
V @ W to V defines a G-equivariant morphism of orthogonal spaces

pvw : Lygw — Ly.

If U is a K-representation, then we combine the left K-action and the right
G-action on L(V, U) into a left action of K X G as in (1.1.18).

Proposition 1.1.26. Let G and K be compact Lie groups and V a faithful G-
representation.

(1) The (KxG)-space Ly(Uk) = L(V,Uk) is a universal space for the family
F(K; G) of graph subgroups.
(1) If W is another G-representation, then the restriction map

pvw(Ug) + (Ve W, Ux) — LV, Uk)
is a (K X G)-homotopy equivalence. For every G-space A, the map
(ovw X6 A)(Uk) : (LevewANUx) — (LovANUk)
is a K-homotopy equivalence and the morphism of orthogonal spaces
ovw XgA : LgvewA — LgyvA
is a global equivalence.

Proof (i) We let I be any closed subgroup of K X G. Since the G-action on
V is faithful, the induced right G-action on L(V, Uk) is free. So if I intersects
1 X G non-trivially, then L(V, UK is empty. On the other hand, if 'N(1XG) =
{(1,1)}, then I" is the graph of a unique continuous homomorphism @ : L —
G, where L is the projection of I to K. Then

L(V,Uk)" = LAV, Uk)
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is the space of L-equivariant linear isometric embeddings from the L-represen-
tation a*V to the underlying L-universe of Ux. Since Uk is a complete K-
universe, the underlying L-universe is also complete (Remark 1.1.13), thus the
space L (a*V, Uy) is contractible by Proposition 1.1.21. The space L(V, Ux)
is cofibrant as a (K X G)-space by Proposition 1.1.19 (ii).

(ii) Since G acts faithfully on V, and hence also on V & W, the (K X G)-
spaces L(V & W, Uk) and L(V, Uk) are universal spaces for the same family
F(K;G), by part (i). So the map pyw(Ug) : L(V & W, Ug) — L(V,Uk) is
a (K x G)-equivariant homotopy equivalence, see Proposition B.11 (ii). The
functor — X A preserves homotopies, so the restriction map (poyw X A)(Ug)
is a K-homotopy equivalence.

The orthogonal spaces L¢ vewA and L yA are closed by Example 1.1.24, so
Proposition 1.1.17 applies and shows that pyw XA is a global equivalence. O

Definition 1.1.27. The global classifying space ByG of a compact Lie group
G is the semifree orthogonal space

ByG = Loy = L(V,0)/G,
where V is any faithful G-representation.

The global classifying space ByG is well-defined up to preferred zigzag of
global equivalences of orthogonal spaces. Indeed, if V and V are two faith-
ful G-representations, then V @ V is yet another one, and the two restriction
morphisms

Loy «— Lovev — Layv
are global equivalences by Proposition 1.1.26 (ii).

Example 1.1.28. We make the global classifying space more explicit for the
smallest non-trivial example: the cyclic group C; of order 2. The sign represen-
tation o of C is faithful, so we can take By C» to be the semifree orthogonal
space generated by (C,, 0); its value at an inner product space W is

(BgCo)(W) = L, (W) = L(o,W)/C, .

Evaluation at any of the two unit vectors in o is a homeomorphism from the
space L(o, W) to S (W), the unit sphere of W. Moreover, the C,-action on the
left becomes the antipodal action on S(W). So the map descends to a home-
omorphism between L(o, W)/C, and P(W), the projective space of W, and
hence

(BaCo)(W) = P(W).

So for a compact Lie group K, the underlying K-space of By C; is P(U), the
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projective space of a complete K-universe. In particular, the underlying non-
equivariant space is homeomorphic to RP*.

Remark 1.1.29 (By G globally classifies principal G-bundles). The term ‘glo-
bal classifying space’ is justified by the fact that By G ‘globally classifies prin-
cipal G-bundles’. We recall that a (K, G)-bundle, also called a K-equivariant
G-principal bundle, is a principal G-bundle in the category of K-spaces, i.e., a
G-principal bundle p : E — B that is also a morphism of K-spaces and such
that the actions of G and K on the total space £ commute (see for example
[179, Ch.I (8.7)]). For every compact Lie group K, the quotient map

g : L(V,Ux) — L(V,Ux)/G = Lev(Ux) = (BgG)(Ux)

is a principal (K, G)-bundle. Indeed, the total space L(V, Ux) is homeomorphic
to the Stiefel manifold of dim(V)-frames in R*, and hence it admits a CW-
structure. Every CW-complex is a normal Hausdorff space (see for example
[71, Prop. A.3] or [57, Prop. 1.2.1]), hence is completely regular. So L(V, Uk)
is completely regular. Since the G-action on L(V, Uk) is free, the quotient map
q is a G-principal bundle by [131, Prop. 1.7.35] or [26, II Thm. 5.8]. Moreover,
this bundle is universal in the sense of the following proposition. Every G-
space that admits a G-CW-structure is paracompact, see [125, Thm. 3.2] (this
reference is rather sketchy, but one can follow the non-equivariant argument
spelled out in more detail in [S7, Thm. 1.3.5]). So the next proposition applies
in particular to all G-CW-complexes.

Proposition 1.1.30. Let V be a faithful representation of a compact Lie group
G. Then for every paracompact K-space A the map

[A,L(V, Ux)/GI* — Pringe(A), [f] — [ (@]

from the set of equivariant homotopy classes of K-maps to the set of isomor-
phism classes of (K, G)-bundles is bijective.

Proof 1 do not know a reference for the result in precisely this form, so I
sketch how to deduce it from various results in the literature about equivariant
fiber bundles. A principal (K,G)-bundle p : E — B is equivariantly triv-
ializable if there is a closed subgroup L of K, a continuous homomorphism
a : L — G, an L-space X and an isomorphism of (K, G)-bundles between p
and the projection

(KxG)yxp X — KX X;
here the source is the quotient space of K X G x X by the equivalence rela-

tion (k, g, Ix) ~ (kl,ga(l), x) for all (k,g,l,x) € K X G X L X X. A principal
(K,G)-bundle p : E — B is numerable if B has a trivializing (in the above
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sense) open cover by K-invariant subsets such that the cover moreover admits
a subordinate partition of unity by K-invariant functions.

A universal (K, G)-principal bundle is a numerable (K, G)-bundle p* : E* —
B" such that for every K-space A the map

[A,B"]" — Prin{{t,A), [f] — [f(p")]

is bijective, where now the target is the set of isomorphism classes of numer-
able principal (K, G)-bundles. Every principal (K, G)-bundle is numerable over
a paracompact base, by [94, Cor. 1.5]. So we are done if we can show that
q : L(V;Ux) — L(V,Uk)/G is a universal (K, G)-principal bundle in the
above sense.

Universal (K, G)-principal bundles can be built in different ways; the most
common construction is a version of Milnor’s infinite join [120], see for ex-
ample [174, 3.1 Satz] or [179, I Theorem (8.12)]. Another method is via bar
construction, compare [183]. I do not know of a reference that explicitly iden-
tifies the projection g : L(V,Ug) — L(V,Uk)/G as a universal bundle in
the present sense, so we appeal to Lashof’s criterion [94, Thm. 2.14]. The base
space L(V, Uk)/G is the union, along h-cofibrations, of the compact spaces
L(V,W))/G, where {W;};> is any exhausting sequence of subrepresentations of
Uk. Since compact spaces are paracompact, the union L(V, Uk)/G is para-
compact, see for example [57, Prop. A.5.1 (v)]. Since L(V, Uk)/G is also nor-
mal, hence completely regular, the bundle g is numerable by Corollaries 1.5
and 1.13 of [94]. Moreover, the fixed-points of L(V, Ug) under any graph sub-
group of (K X G) are contractible by Proposition 1.1.26 (i), so Theorem 2.14
of [94] applies and shows that ¢ : L(V, Ug) — L(V,Uk)/G is strongly uni-
versal, and hence a universal principal (K, G)-bundle. O

As another example we look at the case G = O(n), the nth orthogonal group.
The category of principal O(n)-bundles is equivalent to the category of eu-
clidean vector bundles of rank n, via the associated frame bundle. By the same
construction, principal (K, O(n))-bundles can be identified with K-equivariant
euclidean vector bundles of rank n over K-spaces. The space L(R", Uk)/O(n)
is homeomorphic to Gr,(Ug), the Grassmannian of n-planes in Ug. In the
case when K is a trivial group, the fact that Gr,(R*) is a classifying space
for rank n vector bundles over paracompact spaces is proved in various text-
books. Since O(1) is a cyclic group of order 2, this gives another perspective
on Example 1.1.28.



1.2 Global model structure for orthogonal spaces 31
1.2 Global model structure for orthogonal spaces

In this section we establish the global model structure on the category of
orthogonal spaces, see Theorem 1.2.21. Towards this aim we first discuss a
‘strong level model structure’ which we then localize. In Proposition 1.2.27
we use the global model structure to relate unstable global homotopy theory
to the homotopy theory of K-spaces for a fixed compact Lie group K. We also
show that global classifying spaces of compact Lie groups with abelian iden-
tity component are ‘cofree’, i.e., right induced from non-equivariant classify-
ing spaces, see Theorem 1.2.32. At the end of this section we briefly discuss
the realization of simplicial orthogonal spaces in Construction 1.2.34; we show
that the realization takes level-wise global equivalences to global equivalences,
under a certain ‘Reedy flatness’ condition (Proposition 1.2.37).

There is a functorial way to write an orthogonal space as a sequential col-
imit of orthogonal spaces which are made from the information below a fixed
dimension. We refer to this as the skeleton filtration of an orthogonal space.
The word ‘filtration” should be used with caution because the maps from the
skeleta to the orthogonal space need not be injective.

The skeleton filtration is in fact a special case of a more general skeleton
filtration on certain enriched functor categories that we discuss in Appendix C.
Indeed, if we specialize the base category to V = T, the category of spaces
under cartesian product, and the index category to © = L, then the functor
category D* becomes the category spc of orthogonal spaces. The dimension
function needed in the construction and analysis of skeleta is the vector space
dimension.

We denote by L=" the full topological subcategory of the linear isometries
category L whose objects are the inner product spaces of dimension at most .
We denote by spc=" the category of continuous functors from L=" to T. The
restriction functor

spc — spc=", Y +— Y = Y|y
has a left adjoint
L, : spc=" — spc

given by an enriched Kan extension as follows. The extension /,,(Z) of a con-
tinuous functor Z : L=" — T is a coequalizer of the two morphisms of
orthogonal spaces

o< j<kem LRE, =) X LR/, RF) X Z(R)) —= [[ogicn LR, -) X Z(RY)
(1.2.1)
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One morphism arises from the composition morphisms
L(RF, -) x LR/, RY) — L(R/,-)
and the identity on Z(R/); the other morphism arises from the action maps
LR/, R x ZR)) — Z®R"

and the identity on the free orthogonal space L(R¥, —). Colimits in the category
of orthogonal spaces are created objectwise, so the value /,,(Z)(V) at an inner
product space can be calculated by plugging V into the variable slot in the
coequalizer diagram (1.2.1).

It is a general property of Kan extensions along a fully faithful functor (such
as the inclusion L= — L) that the values do not change on the given subcat-
egory, see for example [90, Prop. 4.23]. More precisely, the adjunction unit

Z — (2™
is an isomorphism for every continuous functor Z : L= — T.

Definition 1.2.2. The m-skeleton, for m > 0, of an orthogonal space Y is the
orthogonal space

k™Y = L,(Y<"™),

the extension of the restriction of ¥ to L=". It comes with a natural morphism

im : k™Y — Y, the counit of the adjunction (I, (—)=™). The mth latching
space of Y is the O(m)-space

L,Y = (k"' Y)R™);
it comes with a natural O(m)-equivariant map
Vi = I (R™) © L, Y — Y(R™),
the mth latching map.

We agree to set sk™' ¥ = 0, the empty orthogonal space, and LyY = 0, the
empty space. The value

in(V) 1 (K" Y)(V) — Y(V)

of the morphism i, is an isomorphism for all inner product spaces V of dimen-
sion at most m.

The two morphisms i,,_; : sk" 'Y — Y and i, : sk™ Y — Y both restrict
to isomorphisms on L="~!, so there is a unique morphism j,, : sk"'Y —
sk™ Y such that i,, o j,, = i,,—1. The sequence of skeleta stabilizes to Y in a very
strong sense. For every inner product space V, the maps j,(V) and i, (V) are
homeomorphisms as soon as m > dim(V). In particular, Y (V) is a colimit of the
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sequence of maps j,,(V) with respect to the morphisms i,,(V). Since colimits
in the category of orthogonal spaces are created objectwise, we deduce that the
orthogonal space Y is a colimit of the sequence of morphisms j,, with respect
to the morphisms i,,,.

We denote the left adjoint to the functor ¥ — Y(R™) by

Gn : OmT — spc.

So G, is a shorthand notation for Lo g, the semifree functor (1.1.23) in-
dexed by the tautological O(m)-representation. Proposition C.17 specializes
to:

Proposition 1.2.3. For every orthogonal space Y and every m > 0 the com-
mutative square

GnVm

GnLnY ——— G, Y(R™)

l l (1.2.4)

sk 'y — > sk"Y
Jm

is a pushout of orthogonal spaces. The left and right vertical morphisms are
adjoint to the identity of L,,Y and of Y(R™), respectively.

Example 1.2.5. As an illustration of the definition, we describe the skeleta and
latching objects for small values of m. We have

sk®Y = const(Y(0)),
the constant orthogonal space with value Y(0); the latching map
0 Y(u)
vi + LiY = sk V(R) = Y(0) — Y(R)

is the map induced by the unique linear isometric embedding u# : 0 — R. Now
we evaluate the pushout square (1.2.4) for m = 1 at an inner product space V;
the result is a pushout square of O(1)-spaces

P(V) x Y(0) ———L([R, V) Xpa) Y[R)

| |

Y(0) (sk' Y)(V)

where P(V) is the projective space of V. Here we exploit the fact that O(1) acts
trivially on L;Y = Y(0) and we can thus identify

(G1LY)(V) = LR, V) Xon) Y(0) = P(V)xY(0), [p.y] — (@[R),y).

The upper horizontal map sends (¢(R), y) to [¢, Y (u)(y)].
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Example 1.2.6 (Latching objects of free orthogonal spaces). We let V be an n-
dimensional representation of a compact Lie group G, and A a G-space. Then
the semifree orthogonal space (1.1.23) generated by A in level V is ‘purely
n-dimensional’ in the following sense. The evaluation functor

evgy : spc — GT

factors through the category L=" as the composite

evg,
spc — spc" —% GT.

So the left adjoint semifree functor L y can be chosen to be the composite of

the two individual left adjoints

Loy = lolgy .

Here lgy : GT — spc=" is given at a G-space A and an inner product space
W of dimension at most n by

LV,W)xgA ifdim(W) = n,

lovA W) =
Ceard)W) { 0 if dim(W) < n.

The space (L yA),, is trivial for m < n, hence the latching space L, (Lg yA) is
trivial for m < n. For m > n the latching map v,, : L,,(LgyvA) — (Lg.yA)n is
an isomorphism. So for m < n the skeleton sk (L¢ yA) is trivial, and for m > n
the skeleton sk”(Lg.yA) = Lg.vA is the entire orthogonal space.

Now we work our way towards the strong level model structure of orthog-
onal spaces. Proposition C.23 is a fairly general recipe for constructing level
model structures on a category such as orthogonal spaces. We specialize the
general construction to the situation at hand. We recall from Definition 1.1.8
that a morphism f : X — Y of orthogonal spaces is a strong level equiva-
lence (or strong level fibration) if for every compact Lie group G and every
G-representation V the map f(V)° : X(V)¢ — Y(V)© is a weak equivalence
(or Serre fibration).

Lemma 1.2.7. For every morphism f : X — Y of orthogonal spaces, the
following are equivalent.

(1) The morphism f is a strong level equivalence.
(i1) For every compact Lie group G and every faithful G-representation V the
map f(V) : X(V) — Y(V) is a G-weak equivalence.
(iii) The map fR™) : XR™) — Y(R™) is an O(m)-weak equivalence for
every m > Q.
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Proof Clearly, condition (i) implies condition (ii), and that implies condi-
tion (iii) (because the tautological action of O(m) on R™ is faithful). So we
suppose that f(R™) is an O(m)-weak equivalence for every m > 0, and we
show that f is a strong level equivalence. Given a G-representation V of di-
mension m, we choose a linear isometry ¢ : V = R™; conjugation by ¢ turns
the G-action on V into a homomorphism p : G — O(m), i.e.,

p() = golg-—)og .
The homeomorphism X(¢) : X(V) — X(R™) then restricts to a homeomor-
phism
X(V)° = X®R"y©.

This homeomorphism is natural for morphisms of orthogonal spaces, so the
hypothesis that f(R™)©@ : XR"P©D — YR™PE is a weak equivalence
implies that also the map (V)¢ : X(V)¢ — Y(V)© is a weak equivalence. O

The same kind of reasoning as in Lemma 1.2.7 shows:

Lemma 1.2.8. The following are equivalent for every morphism f : X — Y
of orthogonal spaces.

(i) The morphism f is a strong level fibration.

(i1) For every compact Lie group G and every faithful G-representation V the
map f(V) : X(V) — Y (V) is a fibration in the projective model structure
of G-spaces.

(iil) The map f(R™) : XR™) — Y(R™) is an O(m)-fibration for every m > Q.

Definition 1.2.9. A morphism of orthogonal spaces i : A — B is a flat cofi-
bration if the latching morphism

Vi = iR™)UVE : AR™) Ug,a LyB — BR™)

is an O(m)-cofibration for all m > 0. An orthogonal space B is flat if the unique
morphism from the empty orthogonal space to B is a flat cofibration. Equiv-
alently, for every m > 0 the latching map v, : L,B — BR™) is an O(m)-
cofibration.

We are ready to establish the strong level model structure.

Proposition 1.2.10. The strong level equivalences, strong level fibrations and
flat cofibrations form a topological cofibrantly generated model structure, the
strong level model structure, on the category of orthogonal spaces.

Proof We apply Proposition C.23 as follows. We let C(m) be the projective
model structure on the category of O(m)-spaces (with respect to the set of
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all closed subgroups of O(m)), compare Proposition B.7. The classes of level
equivalences, level fibrations and cofibrations in the sense of Proposition C.23
then become precisely the strong level equivalences, strong level fibrations and
flat cofibrations.

In this situation the consistency condition (see Definition C.22) is a conse-
quence of a stronger property, namely that the functor

LR, R"™™) Xom — : Om)T — O(m +n)T

takes acyclic cofibrations to acyclic cofibrations (in the two relevant projective
model structures). Since the functor is a left adjoint, it suffices to prove the
claim for the generating acyclic cofibrations, i.e., the maps

O(m)/H X ji

for all £ > 0 and all closed subgroups H of O(m), where jy : DF x{0} — DFx
[0, 1] is the inclusion. The functor under consideration takes this generator to
the map L(R”, R"™*")/H X ji, which is an acyclic O(m + n)-cofibration because
L(R™,R™™")/H is cofibrant as an O(m + n)-space, by Proposition 1.1.19 (iii).

We describe explicit sets of generating cofibrations and generating acyclic
cofibrations. We let I be the set of all morphisms G,,i for m > 0 and for
i in the set of generating cofibrations for the projective model structure on
the category of O(m)-spaces specified in (B.8). Then the set I*" detects the
acyclic fibrations in the strong level model structure, by Proposition C.23 (iii).
Similarly, we let J* be the set of all morphisms G, j for m > 0 and for j in the
set of generating acyclic cofibrations for the projective model structure on the
category of O(m)-spaces specified in (B.9). Again by Proposition C.23 (iii),
J® detects the fibrations in the strong level model structure.

The model structure is topological by Proposition B.5, where we take G as
the set of orthogonal spaces Ly g~ for all m > 0 and all closed subgroups H of
O(m), and we take Z = 0. O

For easier reference we make the generating (acyclic) cofibrations of the
strong level model structure even more explicit. Using the isomorphism

Gu(O(m)/H) = LR", =) Xoem (O(m)/H) = LR",-)/H =Lygn ,
we can identify I*" with the set of all morphisms
LH,R”‘ X ik : LH,R’” X ﬁDk 4 LH,R”‘ X Dk

for all k,m > 0 and all closed subgroups H of O(m). The tautological action of
H on R™ is faithful; conversely every pair (G, V) consisting of a compact Lie
group and a faithful representation is isomorphic to a pair (H,R™) for some
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closed subgroup H of R™. We conclude that I is a set of representatives of
the isomorphism classes of morphisms

LG,V X i : LG,V X 6Dk —> LG,V X Dk

for G a compact Lie group, V a faithful G-representation and k£ > 0. Similarly,
J® is a set of representatives of the isomorphism classes of morphisms

Loy X ji @ Lgy x D* x {0} — Lgy x D* x[0,1]
for G a compact Lie group, V a faithful G-representation and k£ > 0.

Proposition 1.2.11. Let K be a compact Lie group and ¢ : W — U a linear
isometric embedding of K-representations, where W is finite-dimensional, and
U is finite-dimensional or countably infinite-dimensional.

(i) For every flat cofibration of orthogonal spaces i : A — B the maps

iU) : A(U) — B(U) and
i(U)VU B(p) : A(U) Usew) BOW) — B(U)

are K-cofibrations of K-spaces.

(i1) For every flat orthogonal space B the map B(y) : B(W) — B(U) is a
K-cofibration of K-spaces and the K-space B(U) is K-cofibrant.

(iii) Every flat orthogonal space is closed.

Proof (i) The class of those morphisms of orthogonal spaces i such that the
map i(U) U B(y) is a K-cofibration of K-spaces is closed under coproducts,
cobase change, composition and retracts. Similarly, the class of those mor-
phisms of orthogonal spaces i such that the map i(U) is a K-cofibration of
K-spaces is closed under coproducts, cobase change, composition and retracts.
So it suffices to show each of the two claims for a set of generating cofibra-
tions. We do this for the morphisms L¢ y X i for all £ > 0, all compact Lie
groups G and all G-representations V, where iy : 0D —s D* is the inclusion.
In this case the first map specializes to L(V, U)/G X i;. The map i is a cofi-
bration and L(V, U)/G is cofibrant as a K-space by Proposition 1.1.19 (ii). So
L(V,U)/G X iy is a K-cofibration of K-spaces.

The second map in question becomes the pushout product of the sphere
inclusion i; with the map

L(V.9)/G : L(V,W)/G — LV, U)/G .

The map i is a cofibration and L(V, ¢)/G is a K-cofibration by Proposition
1.1.19 (i). So their pushout product is again a K-cofibration.

Part (ii) is the special case of part (i) where A = 0 is the empty orthogonal
space. Part (iii) is the special case of (ii) where K is a trivial group, using
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that cofibrations of spaces are in particular h-cofibrations (Corollary A.30) and
hence closed embeddings (Proposition A.31). O

Now we proceed towards the global model structure on the category of or-
thogonal spaces, see Theorem 1.2.21. The weak equivalences in this model
structure are the global equivalences and the cofibrations are the flat cofibra-
tions. The fibrations in the global model structure are defined as follows.

Definition 1.2.12. A morphism f : X — Y of orthogonal spaces is a global fi-
bration if it is a strong level fibration and for every compact Lie group G, every
faithful G-representation V and every equivariant linear isometric embedding
¢ : V. — W of G-representations, the map

FW,X@) + X(V)° — YV Xyane X(W)©

is a weak equivalence.

An orthogonal space X is static if for every compact Lie group G, every
faithful G-representation V, and every G-equivariant linear isometric embed-
ding ¢ : V — W the structure map

X(p) : X(V) — X(W)
is a G-weak equivalence.

Equivalently, a morphism f is a global fibration if and only if f is a strong
level fibration and for every compact Lie group G, every faithful G-representa-
tion V and equivariant linear isometric embedding ¢ : V — W the square of
G-fixed-point spaces

(¢

X6 —29_ xw)o

f<V>Gl lf'(W)G (1.2.13)
Y(v)¢ o Y(W)¢

@°
is homotopy cartesian.

Clearly, an orthogonal space X is static if and only if the unique morphism
to a terminal orthogonal space is a global fibration; the static orthogonal spaces
will thus turn out to be the fibrant objects in the global model structure. The
static orthogonal spaces are those that, roughly speaking, don’t change the
equivariant homotopy type once a faithful representation has been reached.

Proposition 1.2.14. (i) Every global equivalence that is also a global fibra-
tion is a strong level equivalence.
(i1) Every global equivalence between static orthogonal spaces is a strong
level equivalence.
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Proof (i) Welet f : X — Y be a morphism of orthogonal spaces that is both
a global fibration and a global equivalence. We consider a compact Lie group
G, a faithful G-representation V, a finite G-CW-pair (B, A) and a commutative
square:

A—=X(V)

incll lf(v)

We will exhibit a continuous G-map ¢ : B — X(V) such that u|4 = a and
such that f(V) o u is homotopic, relative A, to 5. This shows that the map f(V)
is a G-weak equivalence, so f is a strong level equivalence.

Since f is a global equivalence, there is a G-equivariant linear isometric
embedding ¢ : V — W and a continuous G-map A : B — X(W) such that
Ao = X(¢) oa : A — X(W) and such that f(W)o A : B — Y(W) is G-
homotopic, relative to A, to Y(¢) o 5. Since f is a strong level fibration, we can
improve A into a continuous G-map A’ : B — X(W) such that A'|4 = A4 =
X(p) o a and such that f(W) o A’ is equal to Y(¢) o .

Since f is a global fibration the G-map

(f), X(@) + X(V) — Y (V) Xyw) X(W)

is a G-weak equivalence. So we can find a continuous G-map ¢ : B — X(V)
such that u|4 = @ and (f(V), X(¢)) o i is G-homotopic, relative A, to (8, 1) :
B — Y(V) Xyw) X(W):

A— T XV
7

—
-

incl H_ - l(f (V). X(¥))

—
-

B /W- Y(V) Xy(W) X(W)
This is the desired map.

(ii)) We let f : X — Y be a global equivalence between static orthogonal
spaces. We let G be a compact Lie group, V a faithful G-representation, (B, A)
a finite G-CW-pairand @ : A — X(V) and 8 : B — Y(V) continuous G-
maps such that f(V) o @ = Bla. Since f is a global equivalence, there is a
G-equivariant linear isometric embedding ¢ : V — W and a continuous G-
map A : B — X(W) such that 2|4 = X(¢) o @ and f(W) o A is G-homotopic
to Y(yp) o B relative A. Since X is static, the map X(¢) : X(V) — X(W)isa
G-weak equivalence, so there is a continuous G-map A : B — X(V) such that
Ala = @ and X(¢) o 4 is G-homotopic to A relative A. The two G-maps f(V)o A
and 8 : B — Y(V) then agree on A and become G-homotopic, relative A, after
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composition with Y(¢) : Y(V) — Y(W). Since Y is static, the map Y(yp) is a
G-weak equivalence, so f(V)oAand 8 : B — Y(V) are already G-homotopic
relative A. This shows that f(V) : X(V) — Y(V) is a G-weak equivalence,
and hence f is a strong level equivalence. |

Construction 1.2.15. We let j : A — B be a morphism in a topological
model category. We factor j through the mapping cylinder as the composite

A zy=@axo.1u; B 2L B,

where c(}j) is the ‘front’ mapping cylinder inclusion and r(j) is the projection,
which is a homotopy equivalence. In our applications we will assume that both
A and B are cofibrant; then the morphism c(j) is a cofibration by the pushout
product property. We then define Z(j) as the set of all pushout product maps

c(HOix + A X D¥Upsope Z(j) x DF — Z(j) x D*
for k > 0, where i; : dD¥ — DF is the inclusion.

Proposition 1.2.16. Let C be a topological model category, j : A — B a
morphism between cofibrant objects and f : X — Y a fibration. Then the
following two conditions are equivalent:

(i) The square of spaces

m X
map(B, X) L map(A, X)

map(B,f)l lmap(A»f) (1.2.17)
map(B, Y) W map(A, Y)

is homotopy cartesian.
(ii) The morphism f has the right lifting property with respect to the set Z(j).

Proof The square (1.2.17) maps to the square

. map(c(j),X)
map(Z(j), X) ———— map(4, X)

map(Z(j),f)L jmap(A,f) (1.2.18)

map(Z(j),Y) map(A, Y)

map(c(j),¥)
via the map induced by r(j) : Z(j) — B on the left part and the identity on the
right part. Since r(j) is a homotopy equivalence, the map of squares is a weak
equivalence at all four corners. So the square (1.2.17) is homotopy cartesian if
and only if the square (1.2.18) is homotopy cartesian.
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Since A is cofibrant and f a fibration, map(A, f) is a Serre fibration. So the
square (1.2.18) is homotopy cartesian if and only if the map

(map(Z(), f), map(c(j), X)) : (1.2.19)
map(Z(j), X) — map(Z(j),Y) Xmap(a.y) map(A, X)

is a weak equivalence. Since c(}j) is a cofibration and f is a fibration, the map
(1.2.19) is always a Serre fibration. So (1.2.19) is a weak equivalence if and
only if it is an acyclic fibration, which is equivalent to the right lifting property
for the inclusions i, : dD¥ — DF for all k > 0. By adjointness, the map
(1.2.19) has the right lifting property with respect to the maps i if and only if
the morphism f has the right lifting property with respect to the set Z(j). O

The set J** was defined in the proof of Proposition 1.2.10 as the set of mor-
phisms G,,j for m > 0 and for j in the set of generating acyclic cofibrations
for the projective model structure on the category of O(m)-spaces specified in
(B.9). The set J*" detects the fibrations in the strong level model structure. We
add another set of morphisms K that detects when the squares (1.2.13) are ho-
motopy cartesian. Given any compact Lie group G and G-representations V
and W, the restriction morphism

pcyw = pvw/G : Lovew — Lgy

restricts (the G-orbit of) a linear isometric embedding from V & W to V. If
the representation V is faithful, then this morphism is a global equivalence by
Proposition 1.1.26 (ii). We set

K = U Zpc.yw)

G, VW

the set of all pushout products of boundary inclusions D¥ —s DF with the
mapping cylinder inclusions of the morphisms p¢ yw; here the union is over a
set of representatives of the isomorphism classes of triples (G, V, W) consisting
of a compact Lie group G, a faithful G-representation V and an arbitrary G-
representation W. The morphism pg y,w represents the map of G-fixed-point
spaces X (iV,W)G CX(V6 — X(Ve W)Y every G-equivariant linear isometric
embedding is isomorphic to a direct summand inclusion iyy; the right lifting
property with respect to the union J*" U K characterizes the global fibrations,
by Proposition 1.2.16. We have shown:

Proposition 1.2.20. A morphism of orthogonal spaces is a global fibration if
and only if it has the right lifting property with respect to the set J*" U K.

Now we are ready for the main result of this section.
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Theorem 1.2.21 (Global model structure). The global equivalences, global
fibrations and flat cofibrations form a model structure, the global model struc-
ture on the category of orthogonal spaces. The fibrant objects in the global
model structure are the static orthogonal spaces. The global model structure
is proper, topological and cofibrantly generated.

Proof We number the model category axioms as in [48, 3.3]. The category of
orthogonal spaces is complete and cocomplete, so axiom MC1 holds. Global
equivalences satisfy the 2-out-of-6 property by Proposition 1.1.9 (iii), so they
also satisfy the 2-out-of-3 property MC2. Global equivalences are closed under
retracts by Proposition 1.1.9 (iv); it is straightforward that cofibrations and
global fibrations are closed under retracts, so axiom MC3 holds.

The strong level model structure shows that every morphism of orthogonal
spaces can be factored as f o i for a flat cofibration i followed by a strong
level equivalence f that is also a strong level fibration. For every G-equivariant
linear isometric embedding ¢ : V — W between faithful G-representations,
both vertical maps in the commutative square of fixed-point spaces (1.2.13) are
then weak equivalences, so the square is homotopy cartesian. The morphism f
is thus a global fibration and a global equivalence, which provides one of the
factorizations as required by MCS5. For the other half of the factorization axiom
MC5 we apply the small object argument (see for example [48, 7.12] or [80,
Thm. 2.1.14]) to the set J*" U K. All morphisms in J*" are flat cofibrations and
strong level equivalences. Since L yew and Ly are flat, the morphisms in
K are also flat cofibrations, and they are global equivalences because the mor-
phisms pg v,w are (Proposition 1.1.26 (ii)). The small object argument provides
a functorial factorization of every morphism X — Y of orthogonal spaces as
a composite

x LwLy

where i is a sequential composition of cobase changes of coproducts of mor-
phisms in J*" U K, and ¢ has the right lifting property with respect to J** U K.
Since all morphisms in J*" U K are flat cofibrations and global equivalences,
the morphism i is a flat cofibration and a global equivalence by the closure
properties of Proposition 1.1.9. Moreover, g is a global fibration by Proposi-
tion 1.2.20.

Now we show the lifting properties MC4. By Proposition 1.2.14 (i) a mor-
phism that is both a global equivalence and a global fibration is a strong level
equivalence, and hence an acyclic fibration in the strong level model structure.
So every morphism that is simultaneously a global equivalence and a global
fibration has the right lifting property with respect to flat cofibrations. Now
we let j : A — B be a flat cofibration that is also a global equivalence and
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we show that it has the left lifting property with respect to all global fibra-
tions. By the small object argument we factor j = go i, wherei : A — W
is a (J U K)-cell complex and ¢ : W — B a global fibration. Then ¢ is a
global equivalence since j and i are, and is hence an acyclic fibration in the
strong level model structure, again by Proposition 1.2.14 (i). Since j is a flat
cofibration, a lifting exists in:

A—sw
fl th

Thus j is a retract of the morphism i that has the left lifting property with
respect to global fibrations. But then j itself has this lifting property. This fin-
ishes the verification of the model category axioms. In doing so we have also
specified sets of generating flat cofibrations I*" and generating acyclic cofibra-
tions J*" U K. Sources and targets of all morphisms in these sets are small with
respect to sequential colimits of flat cofibrations, so the global model structure
is cofibrantly generated.

Left properness of the global model structure follows from Proposition 1.1.9
(xi) and the fact that flat cofibrations are h-cofibrations (Corollary A.30 (iii)).
Right properness follows from Proposition 1.1.9 (xii) because global fibrations
are in particular strong level fibrations.

The global model structure is topological by Proposition B.5, with G the set
of semifree orthogonal spaces L v indexed by a set of representatives (G, V)
of the isomorphism classes of pairs consisting of a compact Lie group G and a
faithful G-representation V, and with Z the set of mapping cylinder inclusions
c(pg,v,w) of the morphisms pg vw. ]

The global model structure of orthogonal spaces is also monoidal, in fact
with respect to two different monoidal structures. Indeed, the categorical prod-
uct of orthogonal spaces has the pushout product property for flat cofibrations,
by Proposition 1.3.9 below. Moreover, Proposition 1.4.12 (iii) (for the global
family of all compact Lie groups) shows that global model structure of or-
thogonal spaces satisfies the pushout product property with respect to the box
product of orthogonal spaces.

We also introduce a ‘positive’ version of the global model structure for or-
thogonal spaces; our main use of this variation is for the global model structure
of ultra-commutative monoids in Section 2.1. As is well known from similar
contexts (for example, the stable model structure for commutative orthogonal
ring spectra), model structures cannot usually be lifted naively to multiplicative
objects with strictly commutative products. The solution is to lift a ‘positive’



44 Unstable global homotopy theory

version of the global model structure in which the values at the trivial inner
product space are homotopically meaningless and where the fibrant objects are
the ‘positively static’ orthogonal spaces.

Definition 1.2.22. A morphism of orthogonal spaces f : A — B is a pos-
itive cofibration if it is a flat cofibration and the map f(0) : A(0) — B(0)
is a homeomorphism. An orthogonal space Y is positively static if for every
compact Lie group G, every faithful G-representation V with V # 0 and every
G-equivariant linear isometric embedding ¢ : V — W, the structure map

Y() : Y(V) — Y(W)
is a G-weak equivalence.

If G is a non-trivial compact Lie group, then any faithful G-representation
is automatically non-trivial. So a positively static orthogonal space is static (in
the absolute sense) if the structure map Y(0) — Y(R) is a non-equivariant
weak equivalence.

Proposition 1.2.23 (Positive global model structure). The global equivalences
and positive cofibrations are part of a cofibrantly generated, proper, topolog-
ical model structure, the positive global model structure on the category of
orthogonal spaces. A morphism f : X — Y of orthogonal spaces is a fibra-
tion in the positive global model structure if and only if for every compact Lie
group G, every faithful G-representation V with V # 0 and every equivariant
linear isometric embedding ¢ : V. — W, the map f(V)¢ : X(V)¢ — Y(V)©
is a Serre fibration and the square of G-fixed-point spaces

(¢

X(V)e — X xawye

Fvy© l j JW©

Y(V)© Y(W)©
()T (W)

is homotopy cartesian. The fibrant objects in the positive global model struc-
ture are the positively static orthogonal spaces.

Proof We start by establishing a positive strong level model structure. We call
a morphism f : X — Y of orthogonal spaces a positive strong level equiv-
alence (or positive strong level fibration) if for every inner product space V
with V # 0 the map f(V) : X(V) — Y(V) is an O(V)-weak equivalence (or
O(V)-fibration). Then we claim that the positive strong level equivalences, pos-
itive strong level fibrations and positive cofibrations form a topological model
structure on the category of orthogonal spaces.

The proof is another application of the general construction method for level
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model structures in Proposition C.23. Indeed, we let C(0) be the degenerate
model structure on the category T of spaces in which every morphism is a
weak equivalence and a fibration, but only the isomorphisms are cofibrations.
Form > 1 we let C(m) be the projective model structure (for the set of all closed
subgroups) on the category of O(m)-spaces, compare Proposition B.7. With
respect to these choices of model structures, the classes of level equivalences,
level fibrations and cofibrations in the sense of Proposition C.23 become the
positive strong level equivalences, positive strong level fibrations and positive
cofibrations, respectively. The consistency condition (Definition C.22) holds,
as it is now strictly weaker than for the strong level model structure.

We obtain the positive global model structure for orthogonal spaces by ‘mix-
ing’ the positive strong level model structure with the global model structure
of Theorem 1.2.21. Every positive strong level equivalence is a global equiv-
alence and every positive cofibration is a flat cofibration. The global equiv-
alences and the positive cofibrations are part of a model structure by Cole’s
mixing theorem [38, Thm. 2.1], which is our first claim. By [38, Cor. 3.7] (or
rather its dual formulation), an orthogonal space is fibrant in the positive global
model structure if and only if it is weakly equivalent to a static orthogonal
space in the positive strong level model structure; this is equivalent to being
positively static.

Cofibrant generation, properness and topologicalness of the positive global
model structure are proved in much the same way as for the absolute global
model structure in Theorem 1.2.21. O

Remark 1.2.24. We can relate the unstable global homotopy theory of or-
thogonal spaces to the homotopy theory of G-spaces for a fixed compact Lie
group G. Evaluation at a faithful G-representation V and the semifree functor
at (G, V) are a pair of adjoint functors

Lov : GT == spc : evgyv

between the categories of G-spaces and orthogonal spaces. This adjoint pair is
a Quillen pair with respect to the global model structure of orthogonal spaces
and the ‘genuine’ model structure of G-spaces (i.e., the projective model struc-
ture with respect to the family of all subgroups, compare Proposition B.7). The
adjoint total derived functors

L(Lgy) : Ho(GT) == Ho(spc) : R(evgy)

are independent of the faithful representation V up to preferred natural isomor-
phism, by Proposition 1.1.26 (ii).

Every G-space is G-weakly equivalent to a G-CW-complex, and these are
built from the orbits G/H. So the derived left adjoint L(Lgy) : GT — spc is
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essentially determined by its values on the coset spaces G/H. Since L y(G/H)
is isomorphic to Ly y = BgH, the derived left adjoint takes the homogeneous
space G/H to a global classifying space of H.

The derived right adjoint also has a more explicit description, at least for
closed orthogonal spaces Y, as the underlying G-space Y(U). Indeed, we can
choose a fibrant replacement of Y in the global model structure, i.e., a flat
cofibration j : ¥ — Z that is also a global equivalence, and such that Z
is globally fibrant (i.e., static). Then Z is also closed, and so the induced map
J(Ug) : Y(Us) — Z(Ug) is a G-weak equivalence by Proposition 1.1.17. We
may assume that V' is a subrepresentation of Ug; we choose a nested sequence

V=VicVWVwc..cV, c...

of finite-dimensional G-subrepresentations that exhaust U;. Since V is faithful
and Z is closed and static, the induced maps

ZV)y=2Z(V,) — Z(V) — ... — Z(V,) — ...
are all closed embeddings and G-weak equivalences. So the canonical map
Z(V) — colim,s; Z(V,) = Z(Ug)

is also a G-weak equivalence. Since Z is a globally fibrant replacement of Y, the
G-space Z(V) calculates the right derived functor of evg, y at Y. This exhibits a
chain of two G-weak equivalences

Rieve)(Y) = Z(V) — Z(U) — Y(Us).

Construction 1.2.25 (Cofree orthogonal spaces). We will now define for every
compact Lie group K a right adjoint to the functor that takes an orthogonal
space Y to the underlying K-space Y(Ug). We refer to the right adjoint Rk as
the cofree functor. We consider the continuous functor

L(-Ux) : L — (KD*, V — LV, Uy),

with functoriality given by pre-composition with linear isometric embeddings.
The group K acts on the values of this functor through the action on the com-
plete universe Ux. The cofree orthogonal space Rg(A) associated to a K-space
A is then the composite

L(-U, K(—,A)
L CHO gpor 2 EA 4

The unit of the adjunction is the morphism

ny : Y — Rg(Y(Ukg)) (1.2.26)
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whose value at an inner product space V is the adjoint of the action map
LU xY(V) — Y(Uk), (p,y) — Y(©)©D).
The counit of the adjunction is the continuous K-map
€ Rg(A)(Ug) — A
assembled from the compatible K-maps
Rx(A)(V) = map®(L(V,Ux),A) — A, [+ f(iv),

for V € s(Ug), where iy : V — Uk is the inclusion. This data makes the
functors

() Uk) : spc == KT : Rg
an adjoint pair.
Proposition 1.2.27. Let K be a compact Lie group.

(i) The adjoint functor pair (—)(Ug), Rk) is a Quillen pair for the global
model structure of orthogonal spaces and the projective model structure
of K-spaces.

(i1) For every K-space A the orthogonal space Ri(A) is static.
(iii) For every closed orthogonal space Y the map

(my)" o R : Ho(KT)(Y(Uk),A) —> Ho(spc)(Y,Rk(A))
is bijective.

Proof (i) Welet f : X — Y be a fibration of K-spaces. We let G be an-
other compact Lie group and V a faithful G-representation. Then the K-space
L(V,Uk)/G is K-cofibrant by Proposition 1.1.19 (ii). The projective model
structure on K-spaces is topological, so map® (L(V, Ux)/G, —) takes fibrations
of K-spaces to fibrations of spaces. Because

map® (L(V, Ux)/G, X) = (Re(X)(V)°,

this means that Rg takes fibrations of K-spaces to strong level fibrations of
orthogonal spaces. By the same argument, Rg takes acyclic fibrations of K-
spaces to acyclic fibrations in the strong level model structure, which coincide
with the acyclic fibrations in the global model structure of orthogonal spaces.

Now we let ¢ : V — W be a G-equivariant linear isometric embedding.
Then the map

pvw(UK)/G : L(Ve W, Ux)/G — LV, Ux)/G
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is a K-homotopy equivalence by Proposition 1.1.26 (ii). So the induced map
RxX)@)? + RV — Re(X)(V & W)°

is a homotopy equivalence. So in the commutative square

R (X)(@)°

Re(X)(V)° Re(X)(V & W))©

(RK(f)(V))Gj l(RK(f)(V@W))G

(Rg(V)(V)¢ e (Rg(Y)(V @& W))¢
both vertical maps are Serre fibrations and both horizontal maps are weak
equivalences. The square is then homotopy cartesian, and so the morphism
Ri(f) : Rg(X) — Rk(Y) is a global fibration of orthogonal spaces. Altogether
this shows that the right adjoint Rk preserves fibrations and acyclic fibrations,
s0 ((=)(Uk), Rk) is a Quillen pair.

(ii) Every K-space A is fibrant in the projective model structure. So Rg(A) is
fibrant in the global model structure of orthogonal spaces; by Theorem 1.2.21
these fibrant objects are precisely the static orthogonal spaces.

(iii)) We choose a global equivalence f : Y¢ — Y with flat source. Then
Y¢ and Y are both closed, the former by Proposition 1.2.11 (iii). So the map
f(Ug) : Y (Ux) — Y(Ug) is a K-weak equivalence by Proposition 1.1.17.
So the morphism f induces bijections on both sides of the map in question, and
it suffices to prove the claim for Y° instead of Y. But Y¢ is cofibrant and A is
fibrant, so in this case the claim is just the derived adjunction isomorphism. O

For K = e, the trivial group, we drop the subscript and abbreviate the cofree
functor R, to R.

Definition 1.2.28. An orthogonal space Y is cofree if it is globally equivalent
to an orthogonal space of the form RA for some space A.

We will now develop criteria for detecting cofree orthogonal spaces, and
then recall some non-tautological examples. One criterion involves the unit of
the adjunction, the special case

ny 1 Y — RYR®))

of (1.2.26) for Ux = R*™. The next proposition shows that the morphism 7y is
always a non-equivariant weak equivalence, provided Y is closed.

Proposition 1.2.29. For every closed orthogonal space Y the morphism ny :
Y — R(Y(R™)) induces a weak equivalence

ny(R”) 1 Y(RT) — RYR™)HR™)
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of underlying non-equivariant spaces.

Proof We start with a general observation about cofree orthogonal spaces.
Since RA is static (Proposition 1.2.27 (ii)) and closed, the map (RA)(¢) :
(RA)(V) — (RA)(W) induced by any linear isometric embedding ¢ : V — W
is a weak equivalence and a closed embedding. So the canonical map

A = map(L(0,R®),A) = (RA)0) (1.2.30)
— colimyeyr=)(RA)(W) = (RA)RT)

is a weak equivalence as well. The adjunction counit €4 : (RA)(R*) — Ais a
retraction to the map (1.2.30), so €, is also a weak equivalence.

Now we turn to the proof of the proposition. Even though the map 7ny(R*)
under consideration is not the same as the canonical map (1.2.30) for A =
Y(R™), the counit eyr=) : R(Y(R™))(R™) — Y(R™) is also a retraction to
ny(R*). Since eyr~) is a weak equivalence, so is ny(R™). O

While the morphism 7y : ¥ — R(Y(R*)) tends to be a non-equivariant
equivalence, it is typically not a global equivalence. We will now see that for a
closed orthogonal space Y the morphism ny is a global equivalence if and only
if Y is cofree.

We recall that for a compact Lie group K a universal free K-space is a
K-cofibrant free K-space whose underlying space in non-equivariantly con-
tractible. Any two universal free K-spaces are K-homotopy equivalent, see
Proposition B.11. We call a K-space A cofree if the map

const : A — map(EK,A)

that sends a point to the corresponding constant map is a K-weak equivalence
for some (hence any) universal free K-space EK.

Proposition 1.2.31. For a closed orthogonal space Y the following three con-
ditions are equivalent.

(i) The orthogonal space Y is cofree.
(ii) For every compact Lie group K the K-space Y(Uk) is cofree.
(iii) The adjunction unit ny : Y — R(Y(R®™)) is a global equivalence.

Proof In a first step we show that for every space A and every compact Lie
group K, the K-space (RA)(Uk) is cofree. We choose a faithful K-representa-
tion W. Then L(W,R*) is a universal free K-space by Proposition 1.1.26 (i).
So the projection from EK X L(W,R®) to the second factor is a K-weak equiv-
alence between cofibrant K-spaces, hence a K-homotopy equivalence. So the
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induced map

const : (RA)(W) = map(L(W,R%),A)
— map(EK X L(W,R™),A) = map(EK, (RA)(W))

is a K-homotopy equivalence. Hence the K-space (RA)(W) is cofree as soon
as K acts faithfully on W. Since RA is static (by Proposition 1.2.27 (ii)) and
closed, the canonical map

(RAYW) — (RA)(Uk)

is a K-weak equivalence. So (RA)(Uk) is K-cofree. Now we prove the equiv-
alence of conditions (i), (ii) and (iii).

(i)==(ii) The global equivalences are part of the global model structure on
the category of orthogonal spaces, compare Theorem 1.2.21. Moreover, the
orthogonal space RA is static, hence fibrant in the global model structure. So if
Y is globally equivalent to RA, then for some (hence any) global equivalence
p : Y¢ — Y with cofibrant (i.e., flat) source, there is a global equivalence
f:Y°— RA.

Now we let K be any compact Lie group. The orthogonal space Y is closed
by Proposition 1.2.11 (iii). Since Y and RA are also closed, the global equiva-
lences induce K-weak equivalences

vt < vy T2 Ry

by Proposition 1.1.17. Since (RA)(Uk) is K-cofree by the introductory remark,
sois Y(Uk).

(il)==(iii) We start with a preliminary observation. We let Y and Z be two
closed orthogonal spaces such that the K-spaces Y(Ux) and Z(Ux) are cofree
for all compact Lie groups K. We claim that every morphism f : ¥ — Z of
orthogonal spaces such that f(R*) : Y(R*) — Z(R™) is a non-equivariant
weak equivalence is already a global equivalence. Indeed, for every compact
Lie group K the two vertical maps in the commutative square of K-spaces

Y(U) UC Z(Uy)

const L l/ const

map(EK, Y(Uy)) map(EK, Z(Uk))

map(EK.f(Ux))

are K-weak equivalences by hypothesis. Since Uy is non-equivariantly iso-
metrically isomorphic to R®, the K-map f(Ux) : Y(Ux) — Z(Uk) is a
non-equivariant weak equivalence by hypothesis. So the lower horizontal map
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is a K-weak equivalence. We conclude that the upper horizontal map is a K-
weak equivalence. Since Y and Z are closed, the criterion of Proposition 1.1.17
shows that f is a global equivalence.

Now we apply the criterion to the morphism iy : ¥ — R(Y(R™)). The
map 17y(R*) is a weak equivalence by Proposition 1.2.29. Moreover, for every
compact Lie group K, the space Y(Ug) is K-cofree by hypothesis (ii), and
R(Y(R*®))(Uk) is K-cofree by the introductory remark. The criterion of the
previous paragraph thus applies and shows that the morphism ny : ¥ —
R(Y(R™)) is a global equivalence.

Condition (i) is a special case of (iii). O

We recall now that the global classifying spaces of certain compact Lie
groups are cofree, namely of those with abelian identity path component. Said
differently, the group must be an extension of a finite group by a torus. The fol-
lowing theorem is a reinterpretation of the main result of Rezk’s paper [138],
who calls these groups ‘1-truncated’ because the homotopy groups of the un-
derlying spaces vanish in dimensions larger than 1. The special case of abelian
compact Lie groups was proved earlier by Lashof, May and Segal [95]. The
case of finite groups seems to be folklore, going all the way back to Hurewicz
[82] who proved that for finite groups G, homotopy classes of continuous maps
BK — BG are in bijection with conjugacy classes of continuous group ho-
momorphisms from K to G.

Theorem 1.2.32. Let G be a compact Lie group whose identity path compo-
nent is abelian. Then the global classifying space Bg G is cofree.

Proof We let V be any faithful G-representation, so that BgG = Lg,y. Then
Lev(Uk) = L(V,Uk)/G is a classifying space for principal (K, G)-bundles, by
Proposition 1.1.26. Since G has abelian identity component, it is 1-truncated in
the sense of Rezk, and so the K-space L y(Uk) is cofree by [138, Thm. 1.4].
So criterion (ii) of Proposition 1.2.31 is satisfied; since the orthogonal space
Lg.v is closed, we have thus shown that it is cofree. O

Remark 1.2.33. The global classifying space ByG is not cofree in general,
e.g., when the identity component of G is not abelian. Indeed, for another com-
pact Lie group K, the homotopy set n(’)( (B¢ G) (to be introduced in Definition
1.5.5 below) is in bijection with conjugacy classes of continuous homomor-
phisms from K to G, by Proposition 1.5.12 (ii). On the other hand, the set
n(’)( (R(BG)) is in bijection with homotopy classes of continuous maps from BK
to BG. However, there are continuous maps BK — BG that are not homo-
topic to Ba for any continuous homomorphism @ : K — G. Whenever this
happens, the adjunction unit 7,6 : BgG — R(BG) is not surjective on n(’f ,
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and hence not a global equivalence (by Corollary 1.5.7 below). The first exam-
ples of such ‘exotic’ maps between classifying spaces of compact Lie groups
were constructed by Sullivan and appeared in his widely circulated and highly
influential MIT lecture notes; an edited version of Sullivan’s notes was even-
tually published in [168]. Indeed, Corollary 5.11 of [168] constructs ‘unstable
Adams operations’ ¢” : BU(n) — BU(n) for a prime p and all n < p; for
n > 1 these maps are not induced by any continuous homomorphism.

Construction 1.2.34 (Realization of simplicial objects). We will occasionally
want to realize simplicial objects, so we quickly recall the necessary back-
ground. We let C be a cocomplete category tensored over the category T of
spaces. We let A denote the simplicial indexing category, with objects the fi-
nite totally ordered sets [n] = {0 < 1 < --- < n} for n > 0. Morphisms in A are
all weakly monotone maps. We let

A" = {(t,....t) €[0, 11" [t <t < --- < 1}

be the topological n-simplex. As n varies, these topological simplices assemble
into a covariant functor

A—T, [n] — A"
the coface maps are given by

(O3t1a'-'9tn) f0ri= 0,
dp)i(t1,y ..., 1) =4 (t1,..., ti,ti,..., 1) forO<i<n,
(try.. sty 1) for i = n.

For 0 < i < n—1, the codegeneracy map (s;), : A" — A""! drops the entry #;,,.

A simplicial object in C is functor X : A°®® — C, i.e., a contravariant functor
from A. We use the customary notation X,, = X([n]) for the value of a simplicial
object at [n]. The realization of X is the coend

[n]eA
IX| = f X, X A"

of the functor
APXA — C, ([m],[n]) — X, XxXA".

We also need to recall the latching objects of a simplicial object. We let A(n)
denote category whose objects are the weakly monotone surjections o : [n] —
[k]; a morphism from o : [n] — [k] to ¢’ : [n] — [K’] is a morphism
a : [k] — [Kk'] in A (necessarily surjective as well) with @ o o0 = o’. We
let A(n), denote the full subcategory of A(n) consisting of all objects except
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the identity of [n]. A simplicial object X can be restricted along the forgetful
functor

AR — AP, (o :[n] — [k]) — [K].
The nth latching object of X is the colimit over A(n).' of the restricted functor:
Ly(X) = colimyg (X ou). (1.2.35)
The morphisms
o' Xy = Xou)(o:[n] —[k]) — X,
assemble into a latching morphism
L+ LAX) — X,

from the nth latching object of X to the value at [n]. For example, the category
A(0), is empty, so Lé(X) is an initial object of C. The category A(1), has a
unique object sy : [1] — [0], so L?(X) = Xy and the latching morphism is
given by sj : Xo — Xj. The category A(2), has three objects and two non-
identity morphisms, and LQ(X) is a pushout of the diagram

5 5
X] — X() —>X| .

We specialize the above to realizations of simplicial orthogonal spaces, i.e.,
simplicial objects in the category of orthogonal spaces. For orthogonal spaces,
coends and product with A" are objectwise, and hence

IXI(V) = 1X(V)I,

i.e., the value of |X]| at an inner product space V is the realization of the sim-
plicial space [n] — X, (V), as discussed in Construction A.32. By Proposition
A.35, the realization can be formed in the ambient category of all topological
spaces, and the result is automatically compactly generated.

Definition 1.2.36. A simplicial orthogonal space X is Reedy flat if the latching
morphism /, : L2(X) — X,, is a flat cofibration of orthogonal spaces for every
n>0.

The terminology ‘Reedy flat’ stems from Reedy’s theorem [136] that the
simplicial objects in any model category admit a certain model structure, nowa-
days called the ‘Reedy model structure’, in which the equivalences are the level
equivalences of simplicial objects. Reedy’s paper — though highly influential —
remains unpublished, but an account of the Reedy model structure can for ex-
ample be found in [63, VII Prop. 2.11]. If we form the Reedy model structure
starting with the global model structure of orthogonal spaces, then the cofibrant
objects are precisely the Reedy flat simplicial orthogonal spaces.
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The most important consequence of Reedy flatness for our purposes is that
realization is homotopical for these simplicial orthogonal spaces. Indeed, the
global model structure of orthogonal spaces is a topological model structure by
Theorem 1.2.21. We can turn this into a simplicial model structure by defining
the tensor of an orthogonal space X with a simplicial set A as

X®A = X x|Al,

the objectwise product with the geometric realization of A. The following
proposition is then a special case of the fact that realization is a left Quillen
functor for the Reedy model structure on simplicial orthogonal spaces, see
[63, VII Prop. 3.6].

Proposition 1.2.37. (i) The realization of every Reedy flat simplicial or-
thogonal space is flat.
(ii) Let f : X — Y be a morphism of Reedy flat simplicial orthogonal
spaces. If f, : X,, — Y, is a global equivalence for every n > 0, then the
morphism of realizations |f| : |X| — |Y| is a global equivalence.

1.3 Monoidal structures

This section is devoted to monoidal products in the category of orthogonal
spaces, with emphasis on global homotopical features. Our main focus is the
box product of orthogonal spaces, a special case of a Day type convolution
product, and the ‘good’ monoidal structure for orthogonal spaces. We prove in
Theorem 1.3.2 that the box product is fully homotopical with respect to global
equivalences. While the box product is the most useful monoidal structure for
orthogonal spaces, the cartesian product is also relevant for our purposes. We
show in Proposition 1.3.9 that the categorical product, too, satisfies the pushout
product property for flat cofibrations. In particular, the product of two flat or-
thogonal spaces is again flat.

The last part of this section introduces complex analogues LS’W of the semi-
free orthogonal spaces, indexed by unitary G-representations W, see Construc-
tion 1.3.10. While these complex versions are not (semi)free in any categorical
sense, they are similar to the semifree orthogonal spaces in many ways; for ex-
ample, the orthogonal spaces ng are flat (Proposition 1.3.11 (ii)) and behave
well multiplicatively under box and cartesian product (Proposition 1.3.12).

We define a bimorphism b : (X,Y) — Z from a pair of orthogonal spaces
(X, Y) to another orthogonal space Z as a collection of continuous maps

byw : X(V)xY(W) — Z(Ve W),
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for all inner product spaces V and W, such that for all linear isometric embed-
dingsp: V— V' and ¢ : W — W’ the following square commutes:

b
XV)XY(W) ——~  ~ 7Z(Ve W)
X («p)XY(J/)l lzww)

X(V')x Y(W") — ZV'eW)

We define a box product of X and Y as a universal example of an orthogonal
space with a bimorphism from X and Y. More precisely, a box product is a pair
(X ® Y, i) consisting of an orthogonal space X ® Y and a universal bimorphism
i:(X,Y) — X®rY,i.e, such that for every orthogonal space Z the map

spc(X®rY,Z) — Bimor((X,Y),Z), fr— fi={f(VeW)oiywlvw

is bijective. We will often refer to this bijection as the universal property of
the box product of orthogonal spaces. Very often only the object X ® Y will
be referred to as the box product, but one should keep in mind that it comes
equipped with a specific, universal bimorphism.

The existence of a universal bimorphism out of any pair of orthogonal spaces
X and Y, and thus of a box product X ® Y, is a special case of the existence of
Day type convolution products on certain functor categories; the construction
is an enriched Kan extension of the ‘pointwise’ cartesian product of X and Y
along the direct sum functor @ : L X L — L (see Proposition C.5), or more
explicitly an enriched coend (see Remark C.6).

Also by the general theory of convolution products, the box product X ® Y
is a functor in both variables (Construction C.8) and it supports a preferred
symmetric monoidal structure (see Theorem C.10); so there are specific natural
associativity and symmetry isomorphisms

XrRY)RZ — Xr(YRZ) and XrRY — YRX

and a strict unit, the terminal orthogonal space 1, i.e., suchthat 1 ® X = X =
X ® 1. The upshot is that the associativity and symmetry isomorphisms make
the box product of orthogonal spaces a symmetric monoidal product with the
terminal orthogonal space as unit object. The box product of orthogonal spaces
is closed symmetric monoidal in the sense that the box product is adjoint to an
internal Hom orthogonal space. We won’t use the internal function object, so
we do not elaborate on it.

The next result proves a key feature, namely that the box product of orthog-
onal spaces coincides with the categorical product, up to global equivalence.
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Given two orthogonal spaces X and Y, the maps

X(V)x Y(W) 22O v v e wyx Y(Ve W) = (X x Y)(Ve W)

form a bimorphism (X,Y) — X X Y as V and W vary over all inner product
spaces; here iy : V — V@ Wand i, : W — V & W are the two direct
summand embeddings. This bimorphism is represented by a morphism

Pxy - XRY — XXY (131)
of orthogonal spaces that is natural in both variables.
Theorem 1.3.2. Let X and Y be orthogonal spaces.

(1) The morphismpxy : XRY — X X Y is a global equivalence.
(ii) The functor X ® — preserves global equivalences.

Proof (i) For an orthogonal space Z we denote by sh Z the orthogonal space
defined by

(shZ)(V) = Z(VeV) and  (shZ)(p) = Z(e®¢);

thus sh Z is isomorphic to shg2 (Z), the multiplicative shift of Z by R? as defined
in Example 1.1.11. We define a morphism of orthogonal spaces

A:XXY — sh(XrY)

at an inner product space V as the composite

X(V)xY(V) o, XrY)VeV) = shXrY)(V).
Now we consider the two composites A o pxy and sh(pxy) o A:

%

shi
X8Y 2 o X XY — o sh(X B Y) —2" h(X x ¥)

We claim that the composite 1 o pxy : X ® Y — sh(X ® Y) is homotopic to
the morphism (X ® Y) o i, where #; is the natural linear isometric embedding
V — V @ V as the first summand. Indeed, for every ¢ € [0, 1] we define a
natural linear isometric embedding

j i VeW — VeWaeVeW by jww) = O t-w 0, VI—£2-w).

Then the maps

X(V)x YOW) 225 (X Y)(Ve W)

(X=Y)(ji)
— XrN)(VoWoVeoW) = shXrY) (Ve W)



1.3 Monoidal structures 57

form a bimorphism as V and W vary; the universal property of the box product
turns this into a morphism of orthogonal spaces

fi : X®RY — sh(X®Y).

The linear isometric embeddings j; vary continuously with ¢, hence the mor-
phisms f; do as well. Moreover, fy = Ao pxy and fj = (X R Y) o iy, so this is
the desired homotopy. The morphism (X ® Y) o i; is a global equivalence by
Theorem 1.1.10, hence so is the morphism 1 o pxy.

The shift functor preserves products, and under the canonical isomorphism
sh(X X Y) = (sh X) X (sh Y) the morphism sh(py y) o A becomes the product of
the two morphisms

Xoi; : X — shX and Yoi, : Y — shY.

The morphisms X o i; and Y o i, are global equivalences by Theorem 1.1.10,
hence so is their product (by Proposition 1.1.9 (vi)). The global equivalences
satisfy the 2-out-of-6 property by Proposition 1.1.9 (iii); since 4 o pxy and
sh(pxy) o A are global equivalences, so is the morphism py y.

(ii) The cartesian product X X — preserves global equivalences by Proposition
1.1.9 (vi). Together with part (i) this implies part (ii). O

Example 1.3.3 (Box product of semifree orthogonal spaces). We show that the
box product of two semifree orthogonal spaces is another semifree orthogonal
space. This can be deduced from the general fact that a convolution product of
two representable functors is again representable (see Remark C.11); however,
the argument is simple enough that we make it explicit for orthogonal spaces.

We consider two compact Lie groups G and K, a G-representation V, a K-
representation W, a G-space A and a K-space B. Then V& W is a (G X K)-
representation via

(ga k) ' (V’ W) = (gV, kW) s
and A X Bis a (G x K)-space in much the same way. The map

(dy -G,—)x(Idy -K,-)
AXB ——— > (L vA)(V) X (LgwB)(W)

— s (LowA) B (L B)(V ® W)
is (G x K)-equivariant, so it extends freely to a morphism of orthogonal spaces
Loxkvew(A X B) — (LgyvA) & (LgwB) . (1.3.4)
The maps
LV, U) X6 A) x (LW, U") xg B) — L(Ve W, U U’) Xgxk (A X B)
([, al, [y, b]) — le®y,(a,b)]
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form a bimorphism from (Lg vA, Lg wB) to Loxk vew(A X B) as the inner prod-
uct spaces U and U’ vary. The universal property of the box product translates
this into a morphism

(LgyvA)® (LgwB) — Lgxk,vew(A X B) .

These two morphisms are mutually inverse isomorphisms, i.e., the box product
(LgyvA) ® (Lg,wB) is isomorphic to Loxx vxw(A X B). A special case of this
shows that the box product of two global classifying spaces is another global
classifying space. Indeed, if G acts faithfully on V, and K acts faithfully on W,
then the (G X K)-action on V @ W is also faithful, hence

(BaG)R (BgK) = Loy ®Lgw = Loxkyvew = Ba(GXK).  (1.3.5)

If we compose the inverse of the isomorphism (1.3.5) with the global equiv-
alence pr;, Ly, from (1.3.1), we obtain a global equivalence of orthogonal
spaces

By(G x K) — (ByG) X (BgK) .

Now we show that the categorical product of orthogonal spaces has the
pushout product property for flat cofibrations, see Proposition 1.3.9 below. In
particular, the product of two flat orthogonal spaces is again flat, which is not
completely obvious from the outset. To this end we establish a useful suffi-
cient condition for flatness; the criterion is inspired by a flatness criterion for
I-spaces proved by Sagave and Schlichtkrull in [141, Prop. 3.11]. The condi-
tions may seem technical at first sight, but we give two examples where they
are easily verified, see Propositions 1.3.8 and 1.3.11. The category of linear
isometries L does not have very many limits; however, for property (b) of the
next proposition we note that it does have pullbacks.

Proposition 1.3.6. Let Y be an orthogonal space.

(1) Suppose that Y satisfies the following conditions.

(a) For every inner product space V, the space Y(V) is compact.
(b) As a functor from the category L to sets, Y preserves pullbacks.

Then for all m > 0 the canonical morphism i,, : sk Y — Y from the
m-skeleton is objectwise a closed embedding.

(i1) Let G be a compact Lie group acting continuously on Y through automor-
phisms of orthogonal spaces. Suppose that in addition to the conditions
(a) and (b), the following also hold for all inner product spaces V:

(c) The (G x O(V))-space Y(V) admits a (G X O(V))-CW-structure.
(d) If an element of Y(V) is fixed by a reflection in O(V), then it is in the
image of Y(U) for some proper subspace U of V.
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Then the orthogonal orbit space Y/G is flat.

Proof We let V be any inner product space and consider the composite

U0<i<mL(R", V)X Y(R) — (k" Y)(V) LN Y(V), (1.3.7)
where the first map is as in the definition of sk” Y as a coequalizer (1.2.1). The
first map in (1.3.7) is a quotient map, and its source is compact by hypothe-
sis (a) and because the spaces L(R’, V) are all compact. So the space (sk” Y)(V)
is quasi-compact. Since Y (V) is Hausdorff, the map i,,(V) is a closed map. So
all that remains is to show that i,,(V) is injective.

We consider two pairs

(¢, x) € LR, V)x Y(RY) and (¢, x") € LR/, V)x Y(R/)
with i, j < m, such that
Y(p)(x) = Y(H)(X') € Y(V).

We show that the two pairs represent the same element in the coequalizer
(sk™ Y)(V). We choose a pullback square in the category L:

R~ RS

T

Rl ——=V
¢

Condition (b) provides an element z € Y(R¥) such that Y(h)(z) = x and
Y(W)(z) = x’. Then

(0, %) = (0, Y((2)) ~ (ph,2) = (¢'H',2) ~ (¢", Y(h)(2) = (¢', X) .

So the pairs (¢, x) and (¢, x’) describe the same element in (sk” Y)(V).
Now we let G act on Y and also assume conditions (c¢) and (d). By the first
part, the latching morphism

v = i1 R™) 1 Ly(Y) = K" YR — Y(R)

is a closed embedding for every m > 0, and the space Y(R™) admits a (G X
O(m))-CW-structure by hypothesis (c). We claim that v,’:, is a (G X O(m))-
cofibration; to this end we characterize its image by a stabilizer condition.
An element of y € Y(R™) is in the image of the latching map if and only if
it is in the image of the map Y(U) — Y(R™) for some (m — 1)-dimensional
subspace U of R™. Then the orthogonal reflection in the hyperplane U fixes y.
Conversely, if y is fixed by a reflection, then it is in the image of Y(U) for some

proper subspace U, by hypothesis (d). So the image of the latching morphism
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coincides with the subspace of all elements of Y(R™) whose stabilizer group
contains the reflection in some hyperplane of R™.

If K is any compact Lie group and X a K-CW-complex, then the set of ele-
ments of X whose stabilizer group contains a conjugate of some fixed subgroup
is automatically a K-CW-subcomplex. In the situation at hand this means that
the image of the latching map v,’; is a (GxO(m))-subcomplex in any (GXxXO(m))-
CW-structure on Y(R™). So the latching map is a (G X O(m))-cofibration.

The latching space construction commutes with colimits, so the canonical
map

Ln¥)/G — Ln(Y/G)

is a homeomorphism, and the latching map for Y/G is obtained from the latch-
ing map for Y by passage to G-orbits. Since the latching map for Y is a (G X
O(m))-cofibration, the induced map on G-orbits is then an O(m)-cofibration by
Proposition B.14 (iii). This shows that the orthogonal space Y/G is flat. O

We apply the flatness criterion to show that the product of two semifree
orthogonal spaces is flat.

Proposition 1.3.8. Let G and K be compact Lie groups and let V. and W be
faithful representations of G and K, respectively. Then the orthogonal space
LG,V X LK,W is flat.

Proof We verify the conditions (a)-(d) of Proposition 1.3.6 for the orthog-
onal space Ly x Ly with the action of G X K by pre-composition on linear
isometric embeddings. The space L(V, U) is compact and a Stiefel manifold,
so it comes with a ‘standard’ smooth structure; moreover, the actions of G by
pre-composition and of O(U) by post-composition are smooth. By the same ar-
gument, L(W, U) admits the structure of a smooth closed (K x O(U))-manifold.
Hence the product L(V, U)XL(W, U) underlies a closed smooth (GXKxO(U))-
manifold. So Illman’s theorem [84, Cor. 7.2] provides a finite (G X K X O(U))-
CW-structure. This verifies conditions (a) and (c).
Conditions (b) is straightforward. Finally, if a pair

(. ¥) € L(V,U) xL(W,U)

is fixed by the reflection in some hyperplane U’ of U, then the images of ¢ and
 are contained in U’, and hence (¢, ) lies in the image of L(V, U") xL(W, U’).
This verifies condition (d). Proposition 1.3.6 thus applies, and shows that the
orthogonal space (Ly xLy)/(GxK) is flat. So the isomorphic orthogonal space
L v X Lgw is flat as well. ]

Since the semifree orthogonal spaces L¢ y ‘generate’ the flat cofibrations,
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the previous Proposition 1.3.8 is the key input for the pushout product property
for the categorical product of orthogonal spaces.

Proposition 1.3.9. Let f : A — Band g : X — Y be flat cofibrations of
orthogonal spaces. Then the pushout product morphism

fOg = (fXY)U(BXgE) : AXYUgux BXX — BXY

is a flat cofibration. In particular, the product of two flat orthogonal spaces is
again flat.

Proof Since the cartesian product preserves colimits in both variables, it suf-
fices to show the claim for two generating flat cofibrations

LG,V X ik . LG,V X 6Dk e LG,V X Dk

and Lgw X i,,, where G and K are compact Lie groups, V and W are faithful
representations of G and K, respectively, and k,m > 0. The pushout product
(Lg.v X ir)O(Lg,w X i) of two such generators is isomorphic to the morphism

Loy X Lkw X igsm -

This morphism is a flat cofibration since the strong level model structure of
orthogonal spaces is topological and L¢ y XLk w is flat (Proposition 1.3.8). O

In Definition 1.1.27 we introduced global classifying spaces as the semifree
orthogonal spaces defined from faithful orthogonal representations of com-
pact Lie groups. As we shall explain in Proposition 1.3.11 below, we can also
use faithful unitary representations instead. This extra flexibility will come in
handy when we study global objects with an intrinsic complex flavor, such as
global classifying spaces of unitary groups, complex Grassmannians, or com-
plex Bott periodicity. The next construction introduces the orthogonal space
ng for a unitary G-representation W. In contrast to their orthogonal cousins
L¢.v, the unitary analogs are not representable nor semifree in any sense. How-
ever, the unitary versions also enjoy various useful properties, for example that
they are flat (see Proposition 1.3.11 (ii)) and behave well under box product
(see Proposition 1.3.12).

Construction 1.3.10. To define the orthogonal space LSW for a unitary G-
representation W, we introduce notation for going back and forth between eu-
clidean inner product spaces over R and hermitian inner product spaces over
C. Throughout, we shall denote euclidean inner products on R-vector spaces
by pointy brackets (—, —), and hermitian inner products on C-vector spaces by
round parentheses (—, —). For a euclidean inner product space V we let

Ve = CerV
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be the complexification; the euclidean inner product (—, —) on V induces a her-
mitian inner product (—, —) on the complexification V¢, defined as the unique
sesquilinear form that satisfies

Aev,10V) = (v,V)

for all v,v" € V. For a hermitian inner product space W, we let uW denote the
underlying R-vector space, equipped with the euclidean inner product

(w,w’y = Re(w,w"),

the real part of the given hermitian inner product. Every C-linear isometric
embedding is in particular an R-linear isometric embedding of underlying eu-
clidean vector spaces, so U(W) € OuW), i.e., the unitary group of W is a
subgroup of the orthogonal group of uW. We thus view a unitary representa-
tion on W as an orthogonal representation on uW. If V and W are two finite-
dimensional C-vector spaces equipped with hermitian inner products, we de-
note by LE(V, W) the space of C-linear isometric embeddings. We topologize
this as a complex Stiefel manifold, i.e., so it is homeomorphic to the space of
complex dimg(V)-frames in W.

Now we can define complex analogs of semifree orthogonal spaces. We let
G be a compact Lie group and W a finite-dimensional unitary G-representation.
We define the orthogonal space LSW by

Lgw(V) = LEW.Vo)/G .
We define a morphism of orthogonal spaces
fow : Leaw — Lgy
as follows. The map
jw W — C&&W = W), jww) = 1/V2-(1ew-i® (iw))

is a G-equivariant C-linear isometric embedding. At a real inner product space
V, we can thus define

fow(V) 1 L@W,V)/G — LEW,Vo)/G by fow(V)(@G) = (¢cojw)G .

Proposition 1.3.11. Let G be a compact Lie group and W a faithful unitary
G-representation.

(1) The morphism fow : Lguw — LS’W is a global equivalence.
(i1) The orthogonal space LS’W is flat.

Proof (i) Both source and target of f are closed orthogonal spaces; so by
Proposition 1.1.17 we may show that for every compact Lie group K the map

fow(Ug) : LW, Ux)/G — LEW,C e Uy)/G
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is a K-weak equivalence. We consider the (K X G)-equivariant continuous map
F i LW, Uy) — LEW,Ce Ux), ¢ +— gcojw

that ‘covers’ fg w(Uk). The source of f is a universal (K X G)-space for the
family F (K; G) of graph subgroups, by Proposition 1.1.26 (i). Since C®g U is
a complete complex G-universe, the complex analog of Proposition 1.1.26 (i),
proved in much the same way, shows that the target of f is also such a universal
space for the same family of subgroups of K X G. So f is a (K x G)-equivariant
homotopy equivalence, compare Proposition B.11. The map fs.w(Ux) = f/G
induced on G-orbit spaces is thus a K-equivariant homotopy equivalence.

(i) We verify conditions (a)-(d) of Proposition 1.3.6 for the orthogonal G-
space L%. The space LE(W, V) is compact and a complex Stiefel manifold, so
it comes with a ‘standard’ smooth structure; moreover, the action of G X O(V)
by pre- and post-composition is smooth. So Illman’s theorem [84, Cor.7.2]
provides a (G x O(V))-CW-structure on L(S,(V). This verifies conditions (a)
and (c).

For condition (b) we observe that complexification takes pullback squares
in L to pullback squares of hermitian inner product spaces and complex linear
isometric embeddings. So the functor L°(W, (=)c) preserves pullbacks. Finally,
if ¢ € L°(W, V¢) is fixed by the reflection in some hyperplane U of V, then the
image of ¢ is contained in Uc, and hence ¢ lies in the image of LE(W, Ug).
This verifies condition (d). Proposition 1.3.6 thus applies, and shows that the
orthogonal space Ly, /G = L, is flat. o

Now we explain in which way the orthogonal spaces Lg \ are multiplicative
in the pair (G, W). We let K be another compact Lie group and U a unitary K-
representation. The maps

LE(W,Ve)/G x LE(U, VL) /K — LW e U, (Ve V)e)/(G x K)

(¢-G,¢-K) — (p@y) - (G X K)
form a bimorphism from (L, ,,,, L /) t0 L, 4 ., as the inner product spaces

V and V’ vary. The universal property of the box product translates this into a
morphism of orthogonal spaces

. 1C c C
Sokwu © Lgw®Lgy — Logkweu -

The analogous morphism for semifree orthogonal spaces (i.e., for orthogonal
representations and without the superscript ©) is an isomorphism, see Example
1.3.3. For the complex analogs, an isomorphism would be too much to hope
for, but the next best thing is true:
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Proposition 1.3.12. Let G and K be compact Lie groups, W a unitary G-
representation and U a unitary K-representation. Then the morphism {g k.wu
is a global equivalence.

Proof The global equivalences discussed in Proposition 1.3.11 (i) make the
following square commute:

Loxxuwau)

LG,uW X LK.uU (135)

fewBfxu L: :lfcxk.ww

C C C
Lew®Lgy o Loxkweu

The left vertical morphism is a global equivalence because these are stable un-

der box product (Theorem 1.3.2 (ii)). Since the vertical morphisms are global

equivalences and the upper horizontal morphism is an isomorphism, the lower

horizontal morphism {¢ k.w,v is also a global equivalence. O

1.4 Global families

In this section we explain a variant of unstable global homotopy theory based
on a global family, i.e., a class F of compact Lie groups with certain closure
properties. We introduce ¥ -equivalences, a relative version of global equiv-
alences, and establish an ¥ -relative version of the global model structure in
Theorem 1.4.8. We also discuss the compatibility of the #-global model struc-
ture with the box product of orthogonal spaces, see Proposition 1.4.12. Finally,
we record that, for multiplicative global families, the 7 -global model structure
lifts to categories of modules and algebras, see Corollary 1.4.15.

Definition 1.4.1. A global family is a non-empty class of compact Lie groups
that is closed under isomorphisms, closed subgroups and quotient groups.

Some relevant examples of global families are: all compact Lie groups; all
finite groups; all abelian compact Lie groups; all finite abelian groups; all finite
cyclic groups; all finite p-groups. Another example is the global family (G)
generated by a compact Lie group G, i.e., the class of all compact Lie groups
isomorphic to a quotient of a closed subgroup of G. A degenerate case is the
global family (e) of all trivial groups. In this case our theory specializes to the
non-equivariant homotopy theory of orthogonal spaces.

For a global family ¥ and a compact Lie group G we write ¥ N G for the
family of those closed subgroups of G that belong to 7. We also write ¥ (m) for
F N O(m), the family of closed subgroups of O(m) that belong to 7. We recall
that an equivariant continuous map of O(m)-spaces is an ¥ (m)-cofibration if
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it has the left lifting property with respect to all morphisms g : A — B of
O(m)-spaces such that the map ¢ : A¥ — B is a weak equivalence and
Serre fibration for all H € F (m).

The following definitions of ¥ -level equivalences, ¥ -level fibrations and
¥ -cofibrations are direct relativizations of the corresponding concepts in the
strong level model structure of orthogonal spaces.

Definition 1.4.2. Let # be a global family. A morphism f : X — Y of
orthogonal spaces is

e an F -level equivalence if for every compact Lie group G in ¥ and every G-
representation V the map f(V)? : X(V)¢ — Y(V)© is a weak equivalence;

e an ¥ -level fibration if for every compact Lie group G in ¥ and every G-
representation V the map f(V)° : X(V)¢ — Y(V)© is a Serre fibration; and

e an ¥ -cofibration if the latching morphism v,, f : X(R™)Ur, xL,,Y — Y(R™)
is an F (m)-cofibration for all m > 0.

Every inner product space V is isometrically isomorphic to R” with the stan-
dard scalar product, where m is the dimension of V. So amorphism f : X — Y
of orthogonal spaces is an ¥ -level equivalence (or ¥ -level fibration) precisely
if for every m > 0 the map f(R™) : X(R™) — Y(R™) is an ¥ (m)-equivalence
(or F (m)-projective fibration). The formal argument is analogous to Lemmas
1.2.7 and 1.2.8 which treat the case ¥ = All. Clearly, the classes of 7 -level
equivalences, ¥ -level fibrations and ¥ -cofibrations are closed under composi-
tion and retracts.

Now we discuss the 7 -level model structures on orthogonal spaces. When
F = All is the global family of all compact Lie groups, then All(m) is the
family of all closed subgroups of O(m). For this maximal global family, an
All-level equivalence is just a strong level equivalence in the sense of Defi-
nition 1.1.8. Moreover, the All-level fibrations coincide with the strong level
fibrations. The All-cofibrations coincide with the flat cofibrations. So for the
global family of all compact Lie groups the (All-level model structure on or-
thogonal spaces is the strong level model structure of Proposition 1.2.10.

Proposition 1.4.3. Let ¥ be a global family. The ¥ -level equivalences, F -
level fibrations and F -cofibrations form a topological and cofibrantly gener-
ated model structure, the F -level model structure, on the category of orthogo-
nal spaces.

Proof We specialize Proposition C.23 by letting C(m) be the F (m)-projective
model structure on the category of O(m)-spaces, compare Proposition B.7.
With respect to these choices of model structures C(m), the classes of level
equivalences, level fibrations and cofibrations in the sense of Proposition C.23
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become precisely the 7 -level equivalences, F -fibrations and ¥ -cofibrations.
Every acyclic cofibration in the 7 (m)-projective model structure of O(m)-
spaces is also an acyclic cofibration in the ‘All-projective model structure of
O(m)-spaces. So the consistency condition (see Definition C.22) in the present
situation is a special case of the consistency condition for the strong level
model structure that we established in the proof of Proposition 1.2.10.

We describe explicit sets of generating cofibrations and generating acyclic
cofibrations for the ¥ -level model structure. We let I# be the set of all mor-
phisms G,,i for m > 0 and for i in the set of generating cofibrations for the
% (m)-projective model structure on the category of O(m)-spaces specified in
(B.8). Then the set I detects the acyclic fibrations in the ¥ -level model struc-
ture by Proposition C.23 (iii). Similarly, we let J# be the set of all morphisms
G,,j for m > 0 and for j in the set of generating acyclic cofibrations for the
F (m)-projective model structure on the category of O(m)-spaces specified in
(B.9). Again by Proposition C.23 (iii), J# detects the fibrations in the ¥ -level
model structure. The ¥ -level model structure is topological by Proposition
B.5, where we take G as the set of orthogonal spaces Ly g for all m > 0 and
all H € ¥ (m). |

Now we proceed towards the construction of the ¥ -global model structure,
see Theorem 1.4.8 below. The weak equivalences in this model structures are
the F-equivalences of the following definition, the direct generalization of
global equivalences in the presence of a global family.

Definition 1.4.4. Let ¥ be a global family. A morphism f : X — Y of
orthogonal spaces is an F -equivalence if the following condition holds: for
every compact Lie group G in ¥, every G-representation V, every k > 0 and
all maps @ : 0D — X(V)° and B8 : D¥ — Y(V)© such that £(V)® oa = Blype,
there is a G-representation W, a G-equivariant linear isometric embedding ¢ :
V —s W and a continuous map A : D¥ —s X(W) such that A|ypx = X(¢)¢ o a
and such that f(W)C o 2 is homotopic, relative to dD, to Y(¢)¢ o 3.

When # = All is the maximal global family of all compact Lie groups, then
All-equivalences are precisely the global equivalences. The following propo-
sition generalizes Proposition 1.1.7, and it is proved in much the same way.

Proposition 1.4.5. Let ¥ be a global family. For every morphism of orthogo-
nal spaces f : X — Y, the following three conditions are equivalent.

(i) The morphism f is an F -equivalence.

(i1) Let G be a compact Lie group, V a G-representation and (B, A) a finite G-
CW-pair all of whose isotropy groups belong to ¥ . Then for all continu-
ousG-mapsa : A — X(V)and B : B— Y(V) such that Bl = f(V)oq,
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there is a G-representation W, a G-equivariant linear isometric embed-
ding ¢ : V. — W and a continuous G-map A : B — X(W) such that
Aa = X(¢) o a and such that f(W) o A is G-homotopic, relative to A, to
Y(p) o .

(iii) For every compact Lie group G in the family ¥ and every exhaustive
sequence {V;};>1 of G-representations the induced map

tel; f(Vy) : tel; X(V;) — tel; Y(V))
is a G-weak equivalence.

Definition 1.4.6. A morphism f : X — Y of orthogonal spaces is an ¥ -
global fibration if it is an ¥ -level fibration and for every compact Lie group G
in the family ¥, every faithful G-representation V and every equivariant linear
isometric embedding ¢ : V — W of G-representations, the map

FWMZX@ © XV — YV xyare XW)°
is a weak equivalence.

The next proposition contains various properties of F -equivalences that gen-
eralize Proposition 1.1.9 and Proposition 1.2.14 (i).

Proposition 1.4.7. Let F be a global family.

(1) Every F -level equivalence is an F -equivalence.
(i1) The composite of two F -equivalences is an F -equivalence.
(i) If f, g and h are composable morphisms of orthogonal spaces such that
gf and hg are T -equivalences, then f, g, h and hgf are also F -equivalences.
(iv) Every retract of an F -equivalence is an F -equivalence.
(v) A coproduct of any set of ¥ -equivalences is an F -equivalence.
(vi) A finite product of ¥ -equivalences is an ¥ -equivalence.
(vii) For every space K the functor —X K preserves F -equivalences of orthog-
onal spaces.
(viii) Let e, : X, — Xu41 and f, : Y, — Y, be morphisms of orthogonal
spaces that are objectwise closed embeddings, forn > 0. Let ¥, : X, —
Y, be F -equivalences of orthogonal spaces that satisfy y,.10e, = fpoi,
for all n > 0. Then the induced morphism Yo, : Xoo — Yo between the
colimits of the sequences is an F -equivalence.
(ix) Let f, : Y, — Y,41 be an F-equivalence and a closed embedding of
orthogonal spaces, for n > 0. Then the canonical morphism f : Yo —
Yo to the colimit of the sequence {f,},>0 is an F -equivalence.
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(x) Let

(xi)

(xii)

(xiii)

(xiv)

g f

C<~——A——8B

1

C/eArﬁBr
8

be a commutative diagram of orthogonal spaces such that f and f’ are
h-cofibrations. If the morphisms «, 8 and vy are F -equivalences, then so
is the induced morphism of pushouts

yUB : CUyB — C' Uy B

Let

L\

A
|
c

be a pushout square of orthogonal spaces such that f is an ¥ -equivalence.
If in addition f or g is an h-cofibration, then the morphism k is an F -
equivalence.

Let

S~

|

k

l»

N~<~——~

|

X
|
Y

be a pullback square of orthogonal spaces in which f is an ¥ -equivalence.
If in addition one of the morphisms f or h is an F -level fibration, then
the morphism g is also an F -equivalence.

Every F -equivalence that is also an F -global fibration is an F -level
equivalence.

h

The box product of two F -equivalences is an F -equivalence.

Proof The proofs of (i) through (xii) are almost verbatim the same as the cor-
responding parts of Proposition 1.1.9, and we omit them. Part (xiii) is proved
in the same way as Proposition 1.2.14 (i).

(xiv) The product of orthogonal spaces preserves ¥ -equivalences in both
variables by part (vi). The morphism pxy : X®Y — X X Y is a global
equivalence, hence an F -equivalence, for all orthogonal spaces X and Y, by
Theorem 1.3.2 (i); this implies the claim. ]
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Now we establish the ¥ -global model structures on the category of orthogo-
nal spaces. We spell out sets of generating cofibrations and generating acyclic
cofibrations for the #-global model structures. In Proposition 1.4.3 we intro-
duced I# as the set of all morphisms G,,i for m > 0 and for i in the set of gen-
erating cofibrations for the ¥ (m)-projective model structure on the category
of O(m)-spaces specified in (B.8). The set I detects the acyclic fibrations in
the ¥ -level model structure, which coincide with the acyclic fibrations in the
¥ -global model structure.

Also in Proposition 1.4.3 we defined J# as the set of all morphisms G, j
for m > 0 and for j in the set of generating acyclic cofibrations for the ¥ (m)-
projective model structure on the category of O(m)-spaces specified in (B.9).
The set J# detects the fibrations in the ¥ -level model structure. We add another
set of morphisms K# that detects when the squares (1.2.13) are homotopy
cartesian for G € . We set

K¢ = U ZpG,vw) »

G,VW : GeF

the set of all pushout products of sphere inclusions i, : dD¥ — D* with
the mapping cylinder inclusions of the morphisms p¢ yw, compare Construc-
tion 1.2.15; here the union is over a set of representatives of the isomorphism
classes of triples (G, V, W) consisting of a compact Lie group G in ¥, a faith-
ful G-representation V and an arbitrary G-representation W. By Proposition
1.2.16, the right lifting property with respect to the union J# U K character-
izes the 7 -global fibrations.

The proof of the following theorem proceeds by mimicking the proof in the
special case ¥ = All, and all arguments in the proof of Theorem 1.2.21 go
through almost verbatim. Whenever the small object argument is used, it now
has to be taken with respect to the set J& U K# (as opposed to the set J*" U K).

Theorem 1.4.8 (7 -global model structure). Let F be a global family.

(i) The F -equivalences, F -global fibrations and F -cofibrations form a model
structure, the ¥ -global model structure, on the category of orthogonal
spaces.

(ii) The fibrant objects in the ¥ -global model structure are the F -static or-
thogonal spaces, i.e., those orthogonal spaces X such that for every com-
pact Lie group G in F, every faithful G-representation V and every G-
equivariant linear isometric embedding ¢ : V — W the map of G-fixed-
point spaces X(go)G : X(V)¢ — X(W)C is a weak equivalence.

(iii) A morphism of orthogonal spaces is:
e an acyclic fibration in the F -global model structure if and only if it
has the right lifting property with respect to the set I#; and
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e afibration in the F -global model structure if and only if it has the right
lifting property with respect to the set J& U K.

(iv) The F -global model structure is cofibrantly generated, proper and topo-
logical.

Example 1.4.9. In the case ¥ = (e) of the minimal global family of triv-
ial groups, the (e)-global homotopy theory of orthogonal spaces just another
model for the (non-equivariant) homotopy theory of spaces. Indeed, the evalu-
ation functor evy : spc — T is a right Quillen equivalence with respect to the
(e)-global model structure. So the total derived functor

Ho(evy) : Ho'“(spc) — Ho(T)

is an equivalence of homotopy categories.

In fact, for the global family # = (e), most of what we do here has al-
ready been studied before: The (e)-global model structure and the fact that it
is Quillen equivalent to the model category of spaces were established by Lind
[102, Thm. 1.1]; in [102], orthogonal spaces are called ‘7I-spaces’ and (e)-
global equivalences are called ‘weak homotopy equivalences’ and are defined
as those morphisms that induce weak equivalences on homotopy colimits.

Corollary 1.4.10. Let f : A — B be a morphism of orthogonal spaces and
F a global family. Then the following conditions are equivalent.

(i) The morphism f is an F -equivalence.
(ii) The morphism can be written as f = wp o w) for an F -level equivalence
wy and a global equivalence w.
(iii) For some (hence any) F -cofibrant approximation f¢ : A° — B¢ in
the F -level model structure and every F -static orthogonal space Y the
induced map

[fS, Y]« [BS,Y] — [A%Y]
on homotopy classes of morphisms is bijective.

Proof (1)&=(ii) The class of F-equivalences contains the global equiva-
lences by definition, and the ¥ -level equivalences by 1.4.7 (i), and is closed
under composition 1.4.7 (ii), so all composites w, o wy as in the claim are ¥ -
equivalences. On the other hand, every ¥ -equivalence f can be factored in the
global model structure of Theorem 1.2.21 as f = gj where j is a global equiv-
alence and ¢ is a global fibration. Since f and j are ¥ -equivalences, so is g by
Proposition 1.4.7 (iii). So g is an F-equivalence and a global fibration, hence
an ¥ -level equivalence by Proposition 1.4.7 (xiii).

(i) (iii) The morphism f is an ¥ -equivalence if and only if the #-co-
fibrant approximation f : A — B¢ is an ¥ -equivalence. Since A° and B¢ are
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¥ -cofibrant, they are cofibrant in the ¥ -global model structure. So by general
model model category theory (see for example [78, Cor.7.7.4]), f¢ is an F -
equivalence if and only if the induced map [f¢, X] is bijective for every fibrant
object in the 7 -global model structure. By Theorem 1.4.8 (ii) these fibrant
objects are precisely the 7 -static orthogonal spaces. [

Remark 1.4.11 (Mixed global model structures). Cole’s ‘mixing theorem’ for
model structures [38, Thm. 2.1] allows us to construct many more ‘mixed’ F -
global model structures on the category of orthogonal spaces. We consider
two global families such that ¥ C &. Then every &-equivalence is an -
equivalence and every fibration in the &-global model structure is a fibration
in the ¥ -global model structure. By Cole’s theorem [38, Thm.2.1] the 7 -
equivalences and the fibrations of the &-global model structure are part of a
model structure, the &-mixed F -global model structure on the category of or-
thogonal spaces. By [38, Prop. 3.2] the cofibrations in the &-mixed ¥ -global
model structure are precisely the retracts of all composites 4o g in which g is an
9 -cofibration and / is simultaneously an &-equivalence and an &-cofibration.
In particular, an orthogonal space is cofibrant in the &-mixed ¥ -global model
structure if it is E-cofibrant and &-equivalent to an ¥ -cofibrant orthogonal
space [38, Cor.3.7]. The &-mixed F -global model structure is again proper
(Propositions 4.1 and 4.2 of [38]).

When F = (e) is the minimal family of trivial groups, this provides infinitely
many E-mixed model structures on the category of orthogonal spaces that are
all Quillen equivalent to the model category of (non-equivariant) spaces, with
respect to weak equivalences.

The next topic is the compatibility of the F-global model structure with the
box product of orthogonal spaces. Given two morphisms f : A — B and
g : X — Y of orthogonal spaces we denote the pushout product morphism by

fOog=(fRY)UBRG : ARY Uygx BRX — BRY.

We recall that a model structure on a symmetric monoidal category satisfies
the pushout product property if the following two conditions hold:

o for every pair of cofibrations f and g the pushout product morphism fOg is
also a cofibration; and

¢ if in addition f or g is a weak equivalence, then so is the pushout product
morphism fOg.

We let & and ¥ be two global families. We denote by & ¥ the smallest global
family that contains all groups of the form G X K for G € & and K € F. So
a compact Lie group H belongs to & X ¥ if and only if H is isomorphic to a
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closed subgroup of a group of the form (G X K)/N for some groups G € & and
K € ¥, and some closed normal subgroup N of G X K.

Proposition 1.4.12. Let & and F be two global families.

(i) The pushout product of an E-cofibration with an F -cofibration is an (& X
F)-cofibration.

(i1) The pushout product of a flat cofibration that is also an F -equivalence
with any morphism of orthogonal spaces is an F -equivalence.

(iii) Let ¥ be a multiplicative global family, i.e., ¥ X ¥ = F. Then the F -
global model structure satisfies the pushout product property with respect
to the box product of orthogonal spaces.

(iv) The positive global model structure satisfies the pushout product property
with respect to the box product of orthogonal spaces.

Proof (i) It suffices to show the claim for sets of generating cofibrations. The
&E-cofibrations are generated by the morphisms

LG,V X ik . LG,V X 6Dk — LG,V X Dk

for G € &, V a G-representation and & > 0. Similarly, the ¥ -cofibrations
are generated by the morphisms Lg w X i), for K € F, W a K-representation
and m > 0. The pushout product of two such generators is isomorphic to the
morphism

. . k+m k+m
Lok vew X ikem : Loxgvew X 0D — Lgxgvew X D™,

compare Example 1.3.3. Since G X K belongs to the family & X ¥, this pushout
product morphism is an (& X ¥ )-cofibration.

(i) Weleti : A — Band j : K — L be morphisms of orthogonal spaces
such that i is a flat cofibration and an ¥ -equivalence. Then i ® K and i ® L are
¥ -equivalences by Proposition 1.4.7 (xiv). Moreover, i is an h-cofibration by
Corollary A.30 (iii), hence sois iR K : AR K — B ® K. Thus its cobase
change, the canonical morphism

ARL — AR LUpgy BRK

is an ¥ -equivalence by Proposition 1.4.7 (xi). Since iR L: AR L — BRX L is
also an ¥ -equivalence, so is the pushout product map, by 2-out-of-6 (Proposi-
tion 1.4.7 (iii)).

(iii) The part of the pushout product property that refers only to cofibrations
is true by part (i) with & = F and the hypothesis that F x ¥ = F. Every
cofibration in the ¥ -global model structure is in particular a flat cofibration, so
the part of the pushout product property that also refers to acyclic cofibrations
in the ¥ -global model structure is a special case of (ii).
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Part (iv) is proved in the essentially the same way as (iii), for the global
family of all compact Lie groups. O

Finally, we will discuss another important relationship between the ¥ -global
model structures and the box product, namely the monoid axiom [146, Def. 3.3].
We only discuss a slightly weaker form of the monoid axiom in the sense that
we only cover sequential (as opposed to more general transfinite) composi-
tions.

Proposition 1.4.13 (Monoid axiom). We let ¥ be a global family. For every
fat cofibration i : A — B that is also an F -equivalence and every orthogonal
space Y the morphism

IRY : ARY — BRY

is an h-cofibration and an F -equivalence. Moreover, the class of h-cofibrations
that are also F -equivalences is closed under cobase change, coproducts and
sequential compositions.

Proof Every flat cofibration is an h-cofibration (Corollary A.30 (iii) applied
to the strong level model structure), and h-cofibrations are closed under box
product with any orthogonal space (Corollary A.30 (ii)), so i ® Y is an h-
cofibration. Since i is an F -equivalence, so is i ® Y by Proposition 1.4.7 (xiv).

Proposition 1.4.7 shows that the class of h-cofibrations that are also ¥ -
equivalences is closed under cobase change, coproducts and sequential com-
positions. O

We let ¥ be a multiplicative global family, i.e., ¥ X & = ¥ . The constant
one-point orthogonal space 1 is the unit object for the box product of orthogo-
nal spaces, and it is ‘free’, i.e., (e)-cofibrant. So 1 is cofibrant in the ¥ -global
model structure. So with respect to the box product, the ¥ -global model struc-
ture is a symmetric monoidal model category in the sense of [80, Def. 4.2.6]. A
corollary is that the unstable 7 -global homotopy category, i.e., the localization
of the category of orthogonal spaces at the class of ¥ -equivalences, inherits a
closed symmetric monoidal structure, compare [80, Thm. 4.3.3]. This ‘derived
box product’ is nothing new, though: since the morphism pxy : XY — XXY
is a global equivalence for all orthogonal spaces X and Y, the derived box prod-
uct is just a categorical product in Ho” (spc).

Definition 1.4.14. An orthogonal monoid space is an orthogonal space R
equipped with unit morphism n : 1 — R and a multiplication morphism
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#: R® R — R that is unital and associative in the sense that the diagram

associativity

RER)BR " Rg(ReR) — > R&R

R®R R
i

commutes. An orthogonal monoid space R is commutative if moreover y o
TpRR = MU, where Tgg : R®RR — R R R is the symmetry isomorphism of
the box product. A morphism of orthogonal monoid spaces is a morphism of
orthogonal spaces f : R — S such that fou® = uS o (f® f) and fong = 7s.

One can expand the data of an orthogonal monoid space into an ‘external’
form as follows. The unit morphism  : 1 — R is determined by a unit ele-
ment 0 € R(0), the image of the map 7(0) : 1(0) — R(0). The multiplication
map corresponds to continuous maps pyw : R(V) X R(W) — R(V & W) for all
inner product spaces V and W, which form a bimorphism as (V, W) varies and
satisfy

vo(x,0) = x  and  pow(0,y) = y.

Put another way, the data of an orthogonal monoid space in external form is
that of a lax monoidal functor. The commutativity condition can be expressed
in terms of the external multiplication as the commutativity of the diagrams

R(V)x RW) —2 ~ RV W)

twistl jR(T\cw)

where Ty : V@& W — W @ V interchanges the summands. So commutative
orthogonal monoid spaces in external form are lax symmetric monoidal func-
tors. We will later refer to commutative orthogonal monoid spaces as ultra-
commutative monoids.

Every # -cofibration is in particular a flat cofibration, so the monoid axiom
in the 7 -global model structure holds. If the global family 7 is closed under
products, Theorem 4.1 of [146] applies to the F-global model structure of
Theorem 1.4.8 and shows:

Corollary 1.4.15. Let R be an orthogonal monoid space and ¥ a multiplica-
tive global family.

(1) The category of R-modules admits the ¥ -global model structure in which
a morphism is an equivalence (or fibration) if the underlying morphism



1.4 Global families 75

of orthogonal spaces is an F -equivalence (or F -global fibration). This
model structure is cofibrantly generated. Every cofibration in this F -
global model structure is an h-cofibration of underlying orthogonal spaces.
If the underlying orthogonal space of R is F -cofibrant, then every cofi-
bration of R-modules is an F -cofibration of underlying orthogonal spaces.

(ii) If R is commutative, then with respect to Ry the F -global model struc-
ture of R-modules is a monoidal model category that satisfies the monoid
axiom.

(iii) If R is commutative, then the category of R-algebras admits the F -global
model structure in which a morphism is an equivalence (or fibration) if
the underlying morphism of orthogonal spaces is an F -equivalence (or
F -global fibration). Every cofibrant R-algebra is also cofibrant as an
R-module.

Proof Almost of the statements are in Theorem 4.1 of [146]. The only ad-
ditional claims that require justification are the two statements in part (i) that
concern the behavior of the forgetful functor on the cofibrations in the ¥ -global
model structure.

Since the forgetful functor from R-modules to orthogonal spaces preserves
all colimits and since the classes of h-cofibrations and of ¥ -cofibrations of or-
thogonal spaces are both closed under coproducts, cobase change, sequential
colimits and retracts, it suffices to show each claim for the generating cofibra-
tions in the #-global model structure on the category of R-modules. These are
of the form

(R® Lpgn) X iy

for some k,m > 0 and H a closed subgroup of O(m) that belongs to the global
family ¥ ; as usual iy : OD¥ — DF is the inclusion. Since i is an h-cofibration
of spaces, the morphisms (R ® Lygn) X i, are h-cofibrations of orthogonal
spaces. This concludes the proof that every cofibration of R-modules is an h-
cofibration of underlying orthogonal spaces.

Now we suppose that the underlying orthogonal space of R is F -cofibrant.
Because H belongs to ¥, the orthogonal space Lyg» is F -cofibrant. Hence
the orthogonal space R ® Lyg» is # -cofibrant by Proposition 1.4.12 (iii). So
(R® Lygn) X i is an F -cofibration of orthogonal spaces. This concludes the
proof that every cofibration of R-modules is an ¥ -cofibration of underlying
orthogonal spaces. O

Strictly speaking, Theorem 4.1 of [146] does not apply verbatim to the ¥ -
global model structure because the hypothesis that every object is small (with
respect to some regular cardinal) is not satisfied, and our version of the monoid
axiom in Proposition 1.4.13 is weaker than Theorem 3.3 of [146] in that we do
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not close under transfinite compositions. However, in our situation the sources
of the generating cofibrations and generating acyclic cofibrations are small
with respect to sequential compositions of flat cofibrations, and this suffices to
run the countable small object argument (compare also Remark 2.4 of [146]).

Proposition 1.4.16. Let R be an orthogonal monoid space and N a right R-
module that is cofibrant in the All-global model structure of Corollary 1.4.15 (i).
Then for every global family F, the functor N Rg — takes T -equivalences of
left R-modules to F -equivalences of orthogonal spaces.

Proof For the course of this proof we call an R-module N homotopical if
the functor N Ry — takes ¥ -equivalences of left R-modules to ¥ -equivalences
of orthogonal spaces. Since the ‘All-global model structure on the category of
right R-modules is obtained by lifting the global model structure of orthogonal
spaces along the free and forgetful adjoint functor pair, every cofibrant right
R-module is a retract of an R-module that arises as the colimit of a sequence

0=My — M, — ... — M, — ... (1.4.17)
in which each M, is obtained from M_; as a pushout

fi®R
AtRR——> B, ®R

| l

for some flat cofibration f; : Ay — By of orthogonal spaces. For example, fi
can be chosen as a disjoint union of morphisms in the set I*" of generating flat
cofibrations. We show by induction on k that each module M; is homotopical.
The induction starts with the empty R-module, where there is nothing to show.
Now we suppose that M;_; is homotopical and claim that then M} is homo-
topical as well. To see this we consider an ¥ -equivalence of left R-modules
¢ 1 X — Y. Then M R ¢ is obtained by passing to horizontal pushouts in
the following commutative diagram of orthogonal spaces:

firX
M, ®Rg X AR X B, rX
Mk—IER‘Fl jAkm lBkthﬁ
M RgY ArRY Ty BrY

Here we exploit the fact that (A;yRR)® X is naturally isomorphic to A;®X. The
left vertical morphism in the diagram is an  -equivalence by hypothesis. The
middle and right vertical morphisms are ¥ -equivalences because the box prod-
uct is homotopical for ¥ -equivalences (Proposition 1.4.7 (xiv)). Moreover,
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the morphism f; is a flat cofibration since it is an h-cofibration (by Corollary
A.30 (iii)), and so the morphisms f; ® X and f; ® Y are h-cofibrations. Propo-
sition 1.4.7 (x) then shows that the induced morphism on horizontal pushouts
M, &g ¢ is again an F -equivalence.

Now we let M be a colimit of the sequence (1.4.17). Then MR X is a colimit
of the sequence M; Ry X. Moreover, since f; : Ay — By is an h-cofibration,
so is the morphism f; ® R, and hence also its cobase change M;_; — M.
So the sequence whose colimit is M Rg X consists of h-cofibrations, which
are objectwise closed embeddings by Proposition A.31. The same is true for
MR Y. Since each M} is homotopical and colimits of orthogonal spaces along
closed embeddings are homotopical (by Proposition 1.4.7 (viii)), we conclude
that the morphism M Rz ¢ : M Rg X — M Ry Y is an ¥ -equivalence, so that
M is homotopical. Thus the class of homotopical R-modules is closed under
retracts, since ¥ -equivalences are closed under retracts, and so every cofibrant
right R-module is homotopical. O

1.5 Equivariant homotopy sets

In this section we define the equivariant homotopy sets ﬂ'g(Y) of orthogonal
spaces and relate them by restriction maps defined from continuous homomor-
phisms between compact Lie groups. The resulting structure, as the Lie groups
vary, is a ‘Rep-functor’ 7, (Y), i.e., a contravariant functor from the category
of compact Lie groups and conjugacy classes of continuous homomorphisms.
The Rep-functor 71,,(BgG) associated with a global classifying space is the
Rep-functor represented by G, by Proposition 1.5.12. We identify the cate-
gory of all natural operations with the category Rep of conjugacy classes of
continuous homomorphisms, compare Corollary 1.5.14. Construction 1.5.15
introduces a pairing of equivariant homotopy sets

X aiX)xa§(Y) — n§(XmY)

for any pair of orthogonal spaces, and Proposition 1.5.17 summarizes its main
properties.

We recall that U is a chosen complete G-universe and s(U;) denotes the
poset, under inclusion, of finite-dimensional G-subrepresentations of U.

Definition 1.5.1. Let Y be an orthogonal space, G be a compact Lie group and
A a G-space. We define

[A, Y] = colimyeyas [A, Y(V)I,
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the colimit over the poset s(Ug) of the sets of G-homotopy classes of G-maps
from A to Y(V).

The canonical G-maps Y(V) — Y(Ug) induce maps from [A, Y(V)]° to
[A, Y(U)]C and hence a canonical map

[A, Y] — [A,Y(UNIC . (1.5.2)

In general there is no reason for this map to be injective or surjective. If Y is
closed and A is compact, the situation improves:

Proposition 1.5.3. Let G be a compact Lie group.

(i) The canonical map (1.5.2) is bijective for every closed orthogonal space
Y and every compact G-space A.

(i1) Let F be a global family and f : X — Y an F -equivalence of orthogo-
nal spaces. Then for every finite G-CW-complex A all of whose isotropy
groups belong to F, the induced map

[A, f1° : [A,X]° — [A,Y]C

is bijective.
(iii) For every pair of orthogonal spaces X and Y and every G-space A, the
canonical map

(1A, px1%, 1A, py19) © [A, X xY]° — [A,X]° X [A, Y]
is bijective (where px and py are the projections).

Proof (i) Since the poset s(U;) contains a cofinal subsequence, Y(Ug) is
a sequential colimit of values of Y along closed embeddings. By Proposition
A.15 (i), every continuous G-map A — Y(U) thus factors through Y (V)
for some finite-dimensional V € s(Ug), which shows surjectivity. Injectivity
follows by the same argument applied to the compact G-space A x [0, 1].

(i) We let 8 : A — Y(V) be a continuous G-map, for some V € s(U),
that represents an element of [A, Y]°. Together with the unique map from the
empty space this specifies an equivariant lifting problem on the left:

X(p)

0 ———= X(V) 0 X(V) = X(W)
j lf(V) j a7 lf(W)
A Y(V) A= Y(V) — = Y(W)

Since (A, 0) is a finite G-CW-pair with isotropy in ¥ and f an ¥ -equivalence,
Proposition 1.4.5 (ii) provides a G-equivariant linear isometric embedding ¢ :
V — W and a continuous G-map A on the right-hand side such that f(W) o 4
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is G-homotopic to Y(¢) o 8. We choose a G-equivariant linear isometric em-
bedding j : W — U extending the inclusion of V. Then the class in [A, X]°
represented by the G-map

X()od : A — X(j(W))

is taken to [B] by the map [A, £16. This shows that [A, 1 is surjective.

For injectivity we consider two G-maps g,8" : A — X(V), for some V €
s(Ug), such that [A, f1%[g] = [A, f1°[¢’]. By enlarging V, if necessary, we
can assume that the two composites f(V)o g and f(V)o g’ are G-homotopic. A
choice of such a homotopy specifies an equivariant lifting problem on the left:

Ax {011 —2 = x(v) Ax (0, 1) — o x(vy) ¢ ~ X(W)
l L.f(V) l e -7 j.f(W)
AX[0,1] ——Y(V) Ax[0,1]= T Y(V) — YD)

Proposition 1.4.5 (ii) provides a G-equivariant linear isometric embedding ¢ :
V — W and a lift A on the right-hand side such that A(—,0) = g, A(—,1) = ¢’
and f(W)o A is G-homotopic, relative A X {0, 1}, to Y(¢) oS. As in the first part,
we use a G-equivariant linear isometric embedding j : W — U, extending
the inclusion of V, to transform A into the G-homotopy

X(j)od : AX[0,1] — X(j(W))

that connects the images of g and g’ in X(j(W)). This shows that [g] = [g'] in
[A,X]%, so [A, f1° is also injective.

(iii) Products of orthogonal spaces are formed objectwise, so the canonical
map

[A, (X x V)(V)]® — [A,X(V)]° X [A, Y(V)]¢

is bijective for every G-representation V. Filtered colimits commute with finite
products, so the claim follows by passage to colimits over the poset s(Us). O

Example 1.5.4. We specialize to the case where ¥ = BgG is the global
classifying space of a compact Lie group G. Proposition 1.1.30 above al-
ready gave an explanation for the name ‘global classifying space’ by exhibiting
(BaG)(Uk) as a classifying space for principal (K, G)-bundles over paracom-
pact K-spaces. We now reinterpret this result as follows.

We choose a faithful G-representation V, so that By /G = Lg,y. We let A be a
compact K-space and consider the composite

[A, BaGI¥ — [A,(ByG) (U)X — Prinka)(A)

where the first map is the bijection of Proposition 1.5.3 (i), exploiting that the
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orthogonal space Lg y is closed. The second map is the bijection provided by
Proposition 1.1.30. The composite bijection

[A, ByGI* = Prinkc)(A)

sends the class represented by a continuous K-equivariant map f : A —
L(V,W)/G to the class of the pullback principal (K, G)-bundle f*g over A,
where g : L(V, W) — L(V, W)/G is the projection.

Now we specialize the equivariant homotopy sets [A, Y]€ to the case A = {x}
of a one-point G-space, and then give it a new name.

Definition 1.5.5. Let G be a compact Lie group. The G-equivariant homotopy
set of an orthogonal space Y is the set

7§ (Y) = colimyeyasy) mo(Y(V)?). (1.5.6)
Specializing Proposition 1.5.3 to a one-point G-space yields:
Corollary 1.5.7. Let G be a compact Lie group.
(i) For every closed orthogonal space Y the canonical map
e (Y) — mo(Y(Ue)°)

is bijective.
(ii) Let F be a global family and f : X — Y an F -equivalence of orthogo-
nal spaces. Then for every compact Lie group G in F the induced map

75 (f)  1G(X) — Ag(¥)
of equivariant homotopy sets is bijective.

The homotopy sets ng(Y ) have contravariant functoriality in G: every con-
tinuous group homomorphism @ : K — G between compact Lie groups
induces a restriction map a* : ng(Y ) — ng (Y), as we shall now explain. We
denote by a* the restriction functor from G-spaces to K-spaces (or from G-
representations to K-representations) along a, i.e., @*Z (or a*V) is the same
topological space as Z (or the same inner product space as V) endowed with a
K-action via

k-z = ak) - z.

Given an orthogonal space Y, we note that the K-spaces a*(Y(V)) and Y(a*V)
are equal (not just isomorphic) for every G-representation V.

The restriction o*(U) is a K-universe, but if @ has a non-trivial kernel, then
this K-universe is not complete. When « is injective, a*(U) is a complete K-
universe (by Remark 1.1.13), but typically different from the chosen complete
K-universe Ux. To deal with this we explain how a G-fixed-point y € Y(U)°,
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for an arbitrary G-representation U, gives rise to an unambiguously defined
element (y) in ﬂ'g(Y). The point here is that U need not be a subrepresentation
of the chosen universe Us and the resulting class does not depend on any
additional choices.

To construct (y) we choose a G-equivariant linear isometry j : U — V onto
a G-subrepresentation V of Ug. Then Y(j)(y) is a G-fixed-point of Y(V), so we
obtain an element

o = [YGHO] € n§(X).

It is crucial, but not completely obvious, that ( f) does not depend on the choice
of isometry j.

Proposition 1.5.8. Let Y be an orthogonal space, G a compact Lie group, U
a G-representation and y € Y(U)° a G-fixed-point.

(i) The class (y) in ng(Y ) is independent of the choice of linear isometry
from U to a subrepresentation of Ug.

(ii) For every G-equivariant linear isometric embedding ¢ : U — W the
relation

(@) = M holds in 7§ (Y).

Proof (i) Weletj: U — Vand j : U — V' be two G-equivariant
linear isometries, with V, V' € s(Us). We choose a third G-equivariant linear
isometry j” : U — V" such that V" € s(Ug) and V" is orthogonal to both
V and V’. We let W be the span of V, V' and V" inside Us. We can then view
J, j and j” as equivariant linear isometric embeddings from U to W.

Since the images of j and j are orthogonal, they are homotopic through
G-equivariant linear isometric embeddings into W, via the homotopy H : U X
[0, 1] — W given by

Huw,t) = V1-2 - jw) + t- Q).

By the same argument, j* and j” are homotopic through G-equivariant linear
isometric embeddings. In particular, j and j* are homotopic to each other. If
H(-,t) : U — W is a continuous 1-parameter family of G-equivariant linear
isometric embeddings from j to j’, then

1 — Y(H(=,0)(Y)

is a path in Y(W)@ from Y(j)(y) to Y(j)(¥), so [Y()H(M] = [Y(7)¥)] in 7§ ().
@ii) If j : W — V is an equivariant linear isometry with V € s(Ug), we
define V = j(p(U)) and we let k : U —> V be the equivariant linear isometry
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that is defined by k(1) = j(p(u)) (i.e., k is essentially j o ¢, but with range V
instead of V). Then

Y@ = YOI @] = Y] = YW] = . O

We can now define the restriction map associated to a continuous group
homomorphism @ : K — G by

a* (YY) — 2k @), bl — o). (1.5.9)

This makes sense because every G-fixed-point of Y(V) is also a K-fixed-point
of a*(Y(V)) = Y(a*V). For a second continuous group homomorphism g :
L — K we have

Broa* = (@B : af(Y) — ni(Y).

Clearly, restriction along the identity homomorphism is the identity, so we have
made the collection of equivariant homotopy sets ng(Y ) a contravariant functor
in the group variable.

An important special case of the restriction homomorphisms are conjugation
maps. Here we consider a closed subgroup H of G, an element g € G and
denote the conjugation homomorphism by

cg - H— H®, c,(h) = g_lhg,

where HS = {g-'hg | h € H} is the conjugate subgroup. As for any group
homomorphism, ¢, induces a restriction map of equivariant homotopy sets

g = ()" 11y (V) — 1y (V).
For g,g € G we have cgz = ¢z 0 ¢g : H —> H%¢ and thus
(88)x = (cgg)" = (czocy)” = (o) 0o(cg)" = g+08« -

A key fact is that inner automorphisms act trivially, i.e., the restriction map g
is the identity on ng(Y). So the action by the restriction maps of the automor-
phism group of G on ng(Y) factors through the outer automorphism group.

Proposition 1.5.10. For every orthogonal space Y, every compact Lie group
G, and every g € G, the conjugation map g : 7T06(Y) — noc(Y) is the identity.

Proof We consider a finite-dimensional G-subrepresentation V of U; and a
G-fixed-point y € Y(V)© that represents an element in ng(Y ). Then the map
lg @ cy(V) — V given by left multiplication by g is a G-equivariant linear
isometry. So

gxlyl = ()’ y] = [YU)W] = [g-y] = D],

by the very definition of the restriction map. The third equation is the definition
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of the G-action on Y(V) through the G-action on V. The fourth equation is the
hypothesis that y is G-fixed. O

We note that because inner automorphisms act as the identity, the restriction
map o* only depends on the homotopy class of @. More precisely, suppose that
a,@ : K — G are homotopic through continuous group homomorphisms.
Then @ and o’ belong to the same path component of the space hom(K, G)
of continuous homomorphisms, so they are conjugate by an element of G,
compare Proposition A.25.

We denote by Rep the category whose objects are the compact Lie groups
and whose morphisms are conjugacy classes of continuous group homomor-
phisms. We can summarize the discussion thus far by saying that for every
orthogonal space Y the restriction maps make the equivariant homotopy sets
{75 (Y)} a functor

7,(Y) : Rep™ — (sets) .
We will refer to such a functor as a Rep-functor.

Our next aim is to show that the homotopy Rep-functor (B, G) of a global
classifying space is represented by G. For every G-representation V we define
the tautological class

ugy € n§(Lay) (1.5.11)
to be the path component of the G-fixed-point
ldy G € (L(V.V)/G)° = (Lgy(V)°
the G-orbit of the identity of V.

Proposition 1.5.12. Let G and K be compact Lie groups and V a faithful G-
representation.

(1) The K-fixed-point space (L y(U, K))K is a disjoint union, indexed by con-
jugacy classes of continuous group homomorphisms « : K — G, of
classifying spaces of the centralizer of the image of a.

(i1) The map
Rep(K,G) — ni(Lgy), [a:K — G| — a*(ugy)
is bijective.

Proof Part (i) works for any universal (K xXG)-space E for the family ¥ (K; G)
of graph subgroups, for example for E = L(V, Ux). The argument can be found
in Theorem 2.17 of [94] or Proposition 5 of [99]. We repeat the proof for the



84 Unstable global homotopy theory

convenience of the reader. For a continuous homomorphism « : K — G, we
let C(@) denote the centralizer, in G, of the image of @, and we set

E® = {x€ E|(k,a(k))- x = xforall k € K},

the space of fixed-points of the graph of @. Since the G-action on the universal
space E is free, Proposition B.17 provides a homeomorphism

[lo" 1], ElC@ — &6,

where the disjoint union is indexed by conjugacy classes of continuous homo-
morphisms. The graph of « belongs to the family ¥ (K;G), so E® is a con-
tractible space. The action of C(a) on E® is a restriction of the G-action on
E, and is hence free. Since E is (K X G)-cofibrant, the fixed-point space E® is
cofibrant for the action of the normalizer (inside K X G) of the graph of «, by
Proposition B.12. Hence E“ is also cofibrant as a C(a)-space, by Proposition
B.14 (i). So for every homomorphism «@ the space E®/C(«) is a classifying
space for the group C(a). This shows part (i).

(ii) Since the classifying space of a topological group is connected, part (i)
identifies the path components of (LG,V((LIK))K with the conjugacy classes of
continuous homomorphisms @ : K — G. The bijection sends the class of «
to a*(ug,v). The claim then follows by applying Corollary 1.5.7 (i). O

Now we show that the restriction maps along continuous group homomor-
phisms give all natural operations between equivariant homotopy sets of or-
thogonal spaces. We will perform similar calculations several other times in
this book, so we state the argument in the more general situation of a cate-
gory C related to the category of orthogonal spaces by an adjoint functor pair.
Our present context is the degenerate case C = spc and the identity functors.
Later we will also consider the cases of the categories of ultra-commutative
monoids, of orthogonal spectra and of ultra-commutative ring spectra.

We recall that the restriction morphism

pcyw = pvw/G : Logyvew = L(VOW,-)/G — LW,-)/G = Lgw

restricts the orbit of a linear isometric embedding from V & W to the second
summand W. This morphism is a global equivalence of orthogonal spaces by
Proposition 1.1.26 (ii), as long as G acts faithfully on W.

Proposition 1.5.13. Let C be a category and
A:spc=—=C:U

an adjoint functor pair such that the composite functor UN : spc — spc
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is continuous. Suppose in addition that for every compact Lie group G, all G-
representations V and all non-zero faithful G-representations W, the morphism
of Rep-functors

1(UA(pgvw)) = ny(UA(Lgyvew)) — my(UA(Lg,w))
is an isomorphism. Let W be a non-zero faithful G-representation, and set
UGy = nugw) € 1G(UALGw)) ,

where 11 : Lgw — UA(Lg,w) is the adjunction unit. Then for every compact
Lie group K, evaluation at the class ug w IS a bijection

Natc ey (75 © U, 75 0 U) — 15 (UALgw)), T > T(ug y,)

; G K
between the set of natural transformations of functors from ng o U to wy o U,
and the set nOK(UA(LG,W)).

Proof To show that the evaluation map is injective we show that every natural
transformation 7 : 7§ o U — n§ o U is determined by the element T(ug,w).
We let X be any object of C and [x] € ng(UX ) a G-equivariant homotopy class,
represented by a G-fixed-point

x e (U,

for some G-representation V. We can stabilize with the representation W and
obtain another representative

UX)i)(x) € (UX)VdW),

where i : V. — V & W is the embedding of the first summand. This G-fixed-
point is adjoint to a morphism of orthogonal spaces

X LG,VEBW — UX
and hence adjoint to a C-morphism
20 Allgyew) — X

that satisfies
AU YUS o) = [x] in 7§(UX) .

The restriction morphism of orthogonal spaces pgvw : Levew — Low
sends ug vew to ug,w. The morphism of orthogonal spaces

UANpgyw) : UANLgyew) — UALgw)
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then sends u o, to ug . The diagram

7S (UApGvw)) S(Ux)
r$(UALgw) <—————— 1§ (UA(Lg vew)) —————— n§(UX)

| 1 )

K = K K
T (UALGW) <o (VAL o) T (WUX)

KUy
commutes and the two left horizontal maps are bijective by hypothesis. Since
[x] = 7§ (U)A§(UApGyw) ™ U y)) .

naturality yields that

7[x]

T (UX) (7§ (UA(pG.vw)) ™ UG 1))
7§ (UX" )l (UA(pg.yw)) ™ (TG ) -

This shows that the transformation 7 is determined by the value T(ug W)

It remains to construct, for every element z € ng (UA(Lg,w)), anatural trans-
formation 7 : 7§ o U — 7§ o U with 7(u, ) = z. The previous paragraph
dictates what to do: we represent a given class in ﬂOG(U X) by a G-fixed-point
x € (UX)(V & W) and set

7[x] = 7KUY U A peyw) () -

We must verify that the element 7[x] is independent of the representative. If
y € (UX)(V @ W) is in the same path component as x, then any path adjoins
to a homotopy of morphisms of orthogonal spaces

H : LG’VQ;.WX[O,I] — UX

from X to . Since the functor UA is continuous, the composite morphisms
UALgyew) ——2 yawx) 225 vx

form a continuous 1-parameter family of morphisms for ¢ € [0, 1], where
ex : A(UX) — X is the counit of the adjunction. This witnesses that the
morphism Ux” is homotopic to the morphism Uy’. So ﬂg (Ux") = ng Uy,
and the class 7[x] is independent of the representative in the given path com-
ponent of (UX)(V & W)C.

Now we let V’ be another G-representation and ¢ : V — V’ a G-equivariant
linear isometric embedding. Then

y = (UX)(@e®W)x) in (UX)(V' &W)°
is another representative of the class [x]. The restriction morphism

o' = Lig@®W,-)/G : Loyvew — Lovew
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makes the following diagram of orthogonal spaces commute:

PGV W y
LG,W <~ LG,V’@W ——UX
#
\m ¢ l /

Lévew
Passing to adjoints and applying U yields another commutative diagram:

UA(pG,v'.w) be
UA(Lgw) <— UA(Lgyew) ——= UX

UA(g*
m\(tﬁ)l %

UA(Lg,vew)
So

7 UX) o a8 (UNpGyw) ™ = 7K(UX") o s (UA(eh) o KU A6y w)) ™!

7&UY") ot (UA G v W)™,

and hence the class 7[x] remains unchanged upon stabilization of x along ¢.
Altogether this shows that 7[x] is well-defined.

Naturality of 7 is straightforward: if  : X — Y is a C-morphism and
x € (UX)(VoW)S is as above, then (Uy)(VOW)(x) € (UY)(VeW)C represents
the class ng(U ¥)[x]. Moreover, the adjoint of (Uy)(V @ W)(x) coincides with
the composite

Xb
Allgyow) — X =5 Y.
So naturality follows:

T (UP)Ix]) = 7§ (U o Ux" )y (UA(pG.vw) ™ (2))
7§ (U) (e (U)o (UApG.yvw)) ™ @) = mi§ (Up)(xlx]) .

Finally, the class ug w 1s represented by the G-fixed-point
Moy (dw -G) € (UALGw)(W)®,

which is adjoint to the identity of A(Lg w). Hence ‘r(ug’w) = ﬂg Id)z)=z. O

Corollary 1.5.14. Every natural transformation ﬂg — 71'(])( of set-valued func-

tors on the category of orthogonal spaces is of the form a* for a continuous
group homomorphism « : K — G, unique up to conjugacy.

Proof We let W be any non-zero faithful G-representation. The composite

Rep(K,G) =% Nat(rl, 75) <5 8(La.w)
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is bijective by Proposition 1.5.12 (ii), where the second map is evaluation at the
tautological class ug w. The evaluation map is bijective by Proposition 1.5.13,
applied to C = spc and the identity adjoint functor pair. So the first map is
bijective as well. |

Construction 1.5.15. Given two orthogonal spaces X and Y, we endow the
equivariant homotopy sets with a pairing

X aj(X) x n§(¥Y) — n{(XRY), (1.5.16)

where G is any compact Lie group. We suppose that V and W are G-represen-
tations and x € X(V)“ and y € Y(W)? are fixed-points that represent classes in
7§ (X) and 7§/ (Y), respectively. We denote by x X y the image of the G-fixed-
point (x,y) under the G-map

ivw : X(VM)XY(W) — XrY)(VeWw)

that is part of the universal bimorphism. If ¢ : V — V' and ¢ : W — W’ are
equivariant linear isometric embeddings, then

X(@)@) xYW)(y) = iy w (X(@)(x), YU)(Y)

XrY)(e@y)livw(x,y) = (XRY) @& Y)(xxy).

So by Proposition 1.5.8 (ii) the classes (x X y) and (X(¢)(x) X Y()(y)) coincide
in 7T06(X ® Y). The upshot is that the assignment

[xIX[y] = (xxy) € 2f(X®Y)
is well-defined.

The pairings of equivariant homotopy sets have several expected properties
which we summarize in the next proposition.

Proposition 1.5.17. Let G be a compact Lie group and X, Y and Z orthogonal
spaces.

(1) (Unitality) Let I be the unique element of the set ng(l). Then 1 Xx=x=
xX 1 forall x € ng(X).

(i1) (Associativity) For all classes x € ﬂg(X), y € ﬂg(Y )and 7 € ﬂg(Z) the
relation

a.(xXy)Xz) = xX(yX2)

holds in n(X ® (Y R Z)), where a : (XRY)RZ = X R (Y RZ) is the
associativity isomorphism.
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(iii) (Commutativity) For all classes x € ng(X) andy € ﬂg(Y) the relation
T.(XxXy) = yXx

holds in ﬂoc(Y R X), where 1 : X® Y — Y R X is the symmetry isomor-
phism.

(iv) (Restriction) For all classes x € ﬂg(X) andy € ﬂg(Y) and all continuous
homomorphisms a : K — G, the relation

a'(x)xa*(y) = a"(xxy)
holds in n(’)((X xY).

Proof The unitality property (i), the associativity property (ii) and compat-
ibility with restriction (iv) are straightforward from the definitions. Part (iii)
exploits that the square

X(V) X Y(W) — ~ (XmY)(Ve W)

lwistL LT(XV,W)

YW) X X(V) ———— (Y rX)(We V)
commutes. The image of (x,y) under the upper right composite represents
7.(x X y), whereas the image of (v, x) under the lower left composite repre-
sents y X x, SO T.(x X y) =y X Xx. m]

Remark 1.5.18 (External versus internal products). If G and K are two com-
pact Lie groups, we can define an ‘external’ form of the pairing (1.5.16) as the
composite

28X x 7k (¥) 22 20K (x) x 20K (y) 25 a@K(XmY), (1.5.19)
where p; : GX K — G and p; : G X K — K are the two projections.
These external pairings also satisfy various naturality, unitality, associativity
and commutativity properties which we do not spell out. On the other hand, the
internal pairing (1.5.16) can be recovered from the external products (1.5.19)
by taking G = K and restricting along the diagonal embedding Ag : G —
G x G. Indeed, the p; o Ag = p> o Ag = Idg, and hence

AG(P1(X) X p3(1) = Ag(P1(X)) X Ag(p3(») = xXy.

Theorem 1.3.2 (i) and the fact that the functor nOG commutes with finite prod-
ucts (Proposition 1.5.3 (iii) for A = *) imply:
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Corollary 1.5.20. For every compact Lie group G and all orthogonal spaces
X and Y, the three maps

((px)«s(py)s)
_—

2SX) x75(¥) = (X rY) toxr) (X x Y) 7$(X) x 7§(Y)

are bijective, where px : XXY — X and py : XXY — Y are the projections.
Moreover, the composite is the identity.

Construction 1.5.21 (Infinite box products). We end this section with a gen-
eralization of the previous corollary to ‘infinite box products’ of based orthog-
onal spaces, but we first have to clarify what we mean by that. We let / be an
indexing set and {X;};c; a family of based orthogonal spaces, i.e., each equipped
with a distinguished point x; € X;(0). If K C J are two nested, finite subsets of
I, then the basepoints of X} for k € J — K provide a morphism

Riex Xy — Rjes X . (1.5.22)

In terms of the universal property of the box product, this morphism arises
from the maps

[ Lox XV — [ xvox[ ], X0 — @ X)@ck Vo) .

where the second map is part of the universal multi-morphism. We can thus
define the infinite box product as the colimit of the finite box products over the
filtered poset of finite subsets of I:

R, Xi = colimyc <o BjesX; .
If I happens to be finite, then this recovers the iterated box product.

The distinguished basepoint of X; represents a distinguished basepoint in the
equivariant homotopy set noc(Xi) for every compact Lie group G. In fact, these
points all arise from the basepoint in 7 (X;) by restriction along the unique
homomorphism G — e. The weak product ], Ing(Xi) is the subset of the
product consisting of all tuples (y;);c; with the property that almost all y; are the
distinguished basepoint. Equivalently, the weak product is the filtered colimit
of the finite products over the poset of finite subsets of /.

If we iterate the pairing (1.5.16), it provides a multi-pairing

l_ljej ﬂoc(Xj) — ﬂg(EjeJ Xj)

for every finite set J. Passing to colimits over finite subsets of I on both sides

yields a map
i€l

]_L',E]ng(x,-) — 7SR, X)) . (1.5.23)

Proposition 1.5.24. Let I be a set and {X;}ic; a family of based orthogonal
spaces. Then for every compact Lie group G the map (1.5.23) is bijective.
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Proof For every k € I we define a ‘projection’

HkIE,X'—>Xk

e[

as follows. Since the infinite box product is defined as a colimit, we must spec-
ify the ‘restriction’ of II; to ®je;X; for every finite subset J of /, compatibly
as J increases. For k ¢ J we define this restriction as the constant morphism
factoring through the basepoint of X. For k € J we define the restriction

IZ]‘EJX]‘ —> Xk

as the morphism corresponding, under the universal property of the box prod-
uct, to the multi-morphism with components

projy X (incl)
HjeJXj(Vj) — Xi(Vi) —— Xu(@®jes V).

Then the composite

’ 7§ (I
[T, 7500 2 afmx) = o
is the projection onto the kth factor. So if two tuples in the weak product have
the same image under the map (1.5.23), they coincide. This shows injectivity.
Now we show surjectivity. Every element of ng(lzge ,X;) is represented by a
G-fixed-point of (®'_,X;)(V) for some G-representation V. Colimits of orthog-
onal spaces are formed objectwise, so (®_,X;)(V) is a colimit of the spaces
(Rje; X;)(V), formed over the filtered poset of finite subsets J of /. For every
nested pair of finite subsets K C J of I the morphism (1.5.22) has a retraction,
by ‘projection’. So at every inner product space V, the map

(Brex Xi)(V) — (R X;)(V)

is a closed embedding by Proposition A.12. For fixed V, the colimit (R_,X;)(V)
in the category T of compactly generated spaces can thus be calculated in
the ambient category of all topological spaces, by Proposition A.14 (ii). In
particular, every G-fixed-point of (®’_,X;)(V) arises from a G-fixed-point of

(B X;)(V) for some finite subset J of 1. In other words, the canonical map

. G G
colimycy <o M5 (Rjes X)) — 7y (R, X;)

is surjective. For finite sets J the map [ ;c; 7§ (X;) — 7§ (®e, X)) is bijective
by Corollary 1.5.20, so this shows surjectivity. [
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Ultra-commutative monoids

Orthogonal monoid spaces are the lax monoidal continuous functors from the
linear isometries category L to the category of spaces. Orthogonal monoid
spaces with strictly commutative multiplication (i.e., the lax symmetric monoi-
dal functors) play a special role, and we honor this by special terminology,
referring to them as ultra-commutative monoids. This chapter is devoted to the
study of ultra-commutative monoids, including a global model structure, an
algebraic study of their homotopy operations, and many examples.

I want to motivate the adjective ‘ultra-commutative’. In various contexts of
homotopy theory, highly structured multiplications that are only associative or
commutative up to higher coherence homotopies can in fact be rigidified to
multiplications that are strictly associative or possibly strictly commutative.
One example is the fact that E.-spaces can be rigidified to strictly commuta-
tive 7 -space monoids [141, Thm. 1.3]; another example is the fact that E,-ring
objects internal to symmetric spectra can be rigidified to strictly commutative
symmetric ring spectra, see for example [51, Thm. 1.4] and the paragraph im-
mediately following it. More to the point of our present discussion, in [102,
Thm. 1.3] Lind establishes a Quillen equivalence between the non-equivariant
homotopy theory of E-spaces (i.e., spaces with an action of the linear isome-
tries operad) and the non-equivariant homotopy theory of commutative orthog-
onal monoid spaces (there called ‘commutative 7-FCPs”).

Our use of the word ‘ultra-commutative’ is intended as a reminder that the
slogan ‘E.,=commutative’ is no longer true in equivariant or global contexts.
More specifically, one can consider orthogonal monoid spaces with an action
of an E-operad; up to non-equivariant equivalence, these objects model E-
spaces, and they can be replaced by equivalent strictly commutative orthogo-
nal monoid spaces. The analogous statement for global equivalences is false,
i.e., E,-orthogonal spaces cannot in general be replaced by globally equiva-
lent ultra-commutative monoids. In fact, the definition of power operations and

92
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transfer maps requires strict commutativity, and Remark 2.4.25 illustrates how
the lack of transfers obstructs ultra-commutativity.

The study of orthogonal monoid spaces goes back to Boardman and Vogt
[16], who introduce them as a delooping machine in a non-equivariant con-
text. More precisely, they show that for every ultra-commutative monoid R the
space R(R*) has the structure of an ‘E-space’ (nowadays called an E,-space),
and if in addition my(R(R™)) is a group, then R(R™) is an infinite loop space.
Ultra-commutative monoids also appear, with an extra point-set topological
hypothesis and under the name .Z,-prefunctor, in [112, IV Def. 2.1]; in [102],
they are studied under the name ‘commutative 7-FCPs’.

In Section 2.1 we formally define ultra-commutative monoids and establish
the global model structure. Section 2.2 is devoted to the algebraic structure on
the homotopy Rep-functor z(R) of an ultra-commutative monoid. We refer
to this structure as a ‘global power monoid’; it consist of an abelian monoid
structure on the set ﬂg (R) for every compact Lie group G, natural for restriction
along continuous homomorphisms, and an additional structure that can equiv-
alently be encoded as power operations (see Definition 2.2.8) or as transfer
maps (see Construction 2.2.29). In this section we also show that these opera-
tions are the entire natural structure (see Theorem 2.2.24). Section 2.3 collects
various examples of ultra-commutative monoids: among these are ones made
from the infinite families of classical Lie groups (orthogonal, special orthogo-
nal, unitary, special unitary, symplectic, spin and spin®); examples consisting
of Grassmannians under direct sum of subspaces (in real, oriented, complex or
quaternionic flavors); examples made from Grassmannians under tensor prod-
uct of subspaces (in a real or complex version); and ultra-commutative multi-
plicative models for global classifying spaces of abelian compact Lie groups.

Section 2.4 is a case study of how non-equivariant homotopy types can ‘fold
up’ into many different global homotopy types. We define, discuss and com-
pare different ultra-commutative and E,-orthogonal monoid spaces whose un-
derlying non-equivariant homotopy type is BO, a classifying space for the in-
finite orthogonal group; in all examples we also identify the associated global
power monoids and fixed-point spaces. Section 2.5 discusses ‘units’ and ‘group
completion’ of ultra-commutative monoids. The two constructions are dual to
each other, and they are homotopically right adjoint and left adjoint to the in-
clusion of group-like ultra-commutative monoids. On the algebraic level of
global power monoids, the topological constructions pick out the invertible
elements and perform the algebraic group completion. A naturally occurring
example of a global group completion is the morphism from the additive Grass-
mannians to the periodic global version of BO. As an application we end the
section with a global, highly structured version of Bott periodicity: Theorem
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2.5.41 shows that BUP is globally equivalent, as an ultra-commutative monoid,
to QU.

2.1 Global model structure

In this section we formally define ultra-commutative monoids and establish
various formal properties of the category umon of ultra-commutative monoids.
We introduce free ultra-commutative monoids in Example 2.1.5. The main re-
sult is the model structure with global equivalences as the weak equivalences,
see Theorem 2.1.15.

Definition 2.1.1. An ultra-commutative monoid is a commutative orthogonal
monoid space. We write umon for the category of ultra-commutative monoids.

As we explained after Definition 1.4.14, the data of an ultra-commutative
monoid is the same as that of a lax symmetric monoidal continuous functor
from the linear isometries category L (under orthogonal direct sum) to the
category T of spaces (under cartesian product).

Remark 2.1.2. One can think of an ultra-commutative monoid as encoding
a collection of E-G-spaces, one for every compact Lie group G, compatible
under restriction. If R is a closed orthogonal space and G a compact Lie group,
then the G-equivariant homotopy type encoded in R can be accessed as the
underlying G-space

R(%{G) = colimVEs(qu) R(V) .

The additional structure of an ultra-commutative monoid gives rise to an ac-
tion of a specific E.-G-operad on this G-space, namely the linear isometries
operad of the complete G-universe Ug. The nth space of this operad is the
space L(U., Ug) of linear isometric embeddings (not necessarily equivari-
ant) of U, into Ug. The group G acts on L(UY,, Us) by conjugation, and the
operad structure is by direct sum and composition of linear isometric embed-
dings. The symmetric group X, permutes the summands in the source. The
space L(U},, U) is G-equivariantly contractible by [100, II Lemma 1.5], and
the X,-action is free; in fact, L(U}, Ug) even has the (G X X,)-equivariant
homotopy type of a universal space for (G, X,)-bundles.

By simultaneous passage to colimit over s(U) in all n variables, the iterated
multiplication maps

RV)X--XR(V,) — RVi®---®V,)

give rise to a map uw) : R(Us)" — R(UE). A linear isometric embedding
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Y : U — U’ between countably infinite-dimensional inner product spaces
induces a map R(¥) : R(U) — R(U’); the resulting ‘action map’

LU, U)X R(U) — RU), .y) — RWY)Y)

is continuous. The operadic action map is then simply the composite

L(UG U)X} act

LU, Us) x R(UG)" —— L(UG, Us) X R(UE) — R(U) .

Now we work towards the main result of this section, the global model struc-
ture for ultra-commutative monoids. Before we start with the homotopical con-
siderations, we get some of the necessary category theory out of the way. For a
moment we consider more generally any symmetric monoidal category C with
monoidal product ® and unit object /. We can then study operads in C and al-
gebras over a fixed operad. The following (co-)completeness and preservation
results can be found in [137, Prop. 2.3.5] or [55, Prop. 3.3.1].

Proposition 2.1.3. Let (C, ®, I) be a complete and cocomplete symmetric monoidal
category such that the monoidal product preserves colimits in each variable.
Let P be an operad in C. Then the category of P-algebras is complete and
cocomplete. Moreover, the forgetful functor from the category of P-algebras

to the underlying category C creates all limits, all filtered colimits and those
coequalizers that are reflexive in the underlying category C.

We let Com denote the incarnation of the commutative operad internal to the
category of orthogonal spaces, under box product. So for every n > 0 the or-
thogonal space Com(n) of n-ary operations is constant with value a one-point
space. Equivalently, Com: is a terminal operad in orthogonal spaces. Endow-
ing an orthogonal space with an ultra-commutative multiplication is the same
as giving it an algebra structure over the commutative operad Com. More for-
mally, the category of ultra-commutative monoids is isomorphic to the cate-
gory of Com-algebras. So Proposition 2.1.3 has the following special case:

Corollary 2.1.4. The category of ultra-commutative monoids is complete and
cocomplete. The forgetful functor from the category of ultra-commutative mo-
noids to the category of orthogonal spaces creates all limits, all filtered colimits
and those coequalizers that are reflexive in the category of orthogonal spaces.

Example 2.1.5 (Free ultra-commutative monoids). We quickly recall that ultra-
commutative monoids are monadic over the category of orthogonal spaces; this
is not particular to our context, and the analogous fact holds for commutative
monoids in any cocomplete symmetric monoidal category. For every orthogo-
nal space Y and m > 0 we denote by

P(Y) = Y%,
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the m-symmetric power, with respect to the box product, of Y. In particular,
PO(Y) is the terminal, constant one-point orthogonal space, and P'(Y) = Y.
Then the orthogonal space

B(Y) = Umzo Pm(Y) = Usz lem/zm

is an ultra-commutative monoid under the concatenation product, and it is in
fact the free ultra-commutative monoid generated by Y. More precisely, the
functor

P : spc — umon

becomes a left adjoint to the forgetful functor with respect to the morphism
ny 1 Y = P!(Y) — PY, the inclusion of the ‘linear’ summand, as the ad-
junction unit. In other words, the following composite is bijective for every
ultra-commutative monoid R:

forget ny
umon(PY,R) —— spc(PY,R) — spc(Y,R) .

Moreover, this adjunction is monadic, i.e., the category of ultra-commutative
monoids is isomorphic to the category of algebras over the monad P.

Construction 2.1.6. We will also exploit the fact that the category of ultra-
commutative monoids is tensored and cotensored over the category T of spaces,
so let us spend a few words explaining this enrichment. In fact, the construc-
tions work more generally for algebras over continuous monads on any cate-
gory enriched in spaces, see for example [117, Lemma 2.8]. We only spell out
the case of ultra-commutative monoids, which are the algebras over the free
ultra-commutative monoid monad P : spc — spc.

The mapping space of morphisms between two orthogonal spaces X and Y is
defined as follows. Since every inner product space is isometrically isomorphic
to R” for some n, the map

speX,¥) — [ ] ) mapX®, YR, f — (FER Do

is injective with closed image. So we endow spc(X, Y) with the subspace topol-
ogy of the product (which is taken internal to the category T of compactly
generated spaces, i.e., it is the Kelleyfied product topology).

If R and S are ultra-commutative monoids, then the set umon(R, S) of mor-
phisms of ultra-commutative monoids is a closed subset of the space spc(R, S ),
and we give it the subspace topology. We omit the verification that composi-
tion is continuous in this topology, so we have indeed defined an enrichment
of the category of ultra-commutative monoids in spaces.

The cotensors of ultra-commutative monoids are defined ‘pointwise’. In
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more detail, we consider an ultra-commutative monoid R and a space A. Then
the orthogonal space map(A, R) inherits an ultra-commutative multiplication

map(A, R) ® map(A,R) — map(A, R)
from the bimorphism with (V, W)-component
map(A, R(V))xmap(A, R(W)) — map(A,R(VeW)), (f,g) +— uvwo(f,8).

The multiplicative unit is the constant map with value the unit of R.

The tensor of an ultra-commutative monoid R with a space A is, however,
not pointwise. To avoid confusion with the objectwise product we denote this
tensor by R ® A; its defining property is that it represents the functor

map(A, umon(R,—)) : umon — (sets) .

So R ® A comes equipped with a continuous map i : A — umon(R,R ® A)
such that the map

umon(R® A,S) — map(A,umon(R,S)), [ +— umon(R, f)oi

is bijective. One construction of a tensor R ® A is as a coequalizer, in the cate-
gory of ultra-commutative monoids, of the two morphisms:

P(axA)
P(PR)x A) —————= PR xA)

v
Here @ : PR — R is the structure morphism (i.e., the counit of the free-
forgetful adjunction) and v is adjoint to the morphism of orthogonal spaces

(PR)X A —> P(Rx A)

that in turn is adjoint to the composite

A 20, map(R,R X A) N map(PR,P(R x A)) .
The above coequalizer defining R ® A is reflexive in the underlying category
of orthogonal spaces, so it can be calculated in the underlying category, by
Proposition 2.1.3.

In our discussion of global group completions in Section 2.5 we will want to
realize simplicial ultra-commutative monoids. We refer to Construction 1.2.34
for generalities about the realization of simplicial objects. For a simplicial
ultra-commutative monoid B : A’ — umon, the term ‘geometric realization’
actually has two potentially different interpretations, and we spend some time
in clarifying this issue. On the one hand we can form the geometric realization
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|Blun in the underlying category of orthogonal spaces; this is, by definition, a
coend, in the category of orthogonal spaces, of the functor

AP XA — spc, ([m],[n]) — B, xA".

We call this the underlying realization of B. Coends of orthogonal spaces are
calculated objectwise, so |B|,, (V) is a realization of the simplicial space [m] —
B,,(V). It is not a priori obvious, however, whether this realization inherits any
multiplication.

On the other hand, we explained in Construction 2.1.6 that the category of
ultra-commutative monoids is tensored over the category T of spaces. We con-
tinue to write R ® A for the tensor of an ultra-commutative monoid R with
a space A, in order to distinguish it from the (objectwise) product of the un-
derlying orthogonal space of R with A. We can also consider the realization
|Blin internal to ultra-commutative monoids, i.e., a coend, in the category of
ultra-commutative monoids, of the functor

A® XA — umon, ([m],[n]) — B,QA".

We call this the internal realization. The internal realization is, by definition,
an ultra-commutative monoid, but it is not immediately clear how it relates to
the underlying realization of |Bl,, as an orthogonal space. As we shall now
show, the forgetful functor from a category of ultra-commutative monoids to
orthogonal spaces commutes with realization of simplicial objects. We do not
claim any originality here, and many results of this kind can be found in the lit-
erature, see for example [110, Thm. 12.2], [50, VII Prop. 3.3], [117, Prop. 4.5],
[106, Prop. 12.4] or [62, Thm. 2.2].

Proposition 2.1.7. Let B be a simplicial object in the category of ultra-commu-
tative monoids. Then the canonical morphism |Bly, — |Blin from the under-
lying realization to the internal realization is an isomorphism of orthogonal
spaces.

Proof We adapt an argument given by Mandell in an unpublished preprint
[106, Prop. 12.4]. We start by considering two simplicial orthogonal spaces
X, Y : A — spc. We denote by X ® Y the diagonal of the external box
product, i.e., the composite simplicial orthogonal space

diagonal XxY =
AP ——— AP X AP — spc X spc — spc.

For every n > 0 we consider the composite

1d xdi
(X, ®Y,) X A" —%5, (X, ®Y,)X (A" x A")

shuffl
S (X, x AR (Y, X AY) — [X|=]|Y],
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where the last morphism is the box product of the two canonical morphisms
X, X A" — |X| and Y,, x A" — |Y|. These composites are compatible with the
coend relations, so together they form a morphism of orthogonal spaces

XrY — X|x|Y|.

We claim that this morphism is an isomorphism. Indeed, since ® preserves
colimits in each variable, the right-hand side is a coend of the functor

(AHP x A* — spc, (kL[ [m],[n]) — (Xx®Y)x A" x A",

Coends of orthogonal spaces are calculated objectwise, and for bisimplicial
spaces the bi-realization is homeomorphic to the realization of the diagonal
(see [135, p. 94, Lemma] or Proposition A.37 (iii)).

By iterating, we obtain a X,,-equivariant isomorphism of orthogonal spaces

X = X

for every m > 0. Since coends commute with colimits, we can pass to X,,-orbits
and take the coproduct over m > 0, resulting in an isomorphism

PQOlun = | Wyzo (X™™)/Zpul = Lyzo IXI*" /X, = PIX].

Moreover, the ultra-commutative monoid P|X| has the universal property of
the internal realization of the simplicial ultra-commutative monoid P o X. This
shows the claim in the special case where B is freely generated by a simplicial
orthogonal space.

Now we treat the general case. The diagram

Pa a
P(PB) —=PB —%> B
u

is a coequalizer diagram of simplicial ultra-commutative monoids. Here « :
PR — R is the adjunction counit and g is the monad structure of the free
functor. Moreover, the coequalizer is split in the underlying category of or-
thogonal spaces, by the morphisms

P(PB) <2 _PB<"_ B

where 17 : R — PR is the unit of the free-forget adjunction, i.e., the inclusion
as the ‘linear’ summand P'(R).

Applying the two functors under consideration gives a commutative diagram
of orthogonal spaces

[P(PB)lun == [PBlun —— |Blun

T e

|P(PB)lin ——= [PBlin — |Blin
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We claim that both rows are coequalizer diagrams of orthogonal spaces. For
the upper row we argue as follows. For every n > 0 the diagram

P(PB,) —=PB, —— B,

is a coequalizer in the category of ultra-commutative monoids. Since the di-
agram splits in the underlying category of orthogonal spaces, it is also a co-
equalizers diagram there, by Proposition 2.1.3 or [105, IV.6, Lemma]. So the
diagram

P(PB) —=PB——B

is also a coequalizer diagram of simplicial orthogonal spaces. Since both prod-
uct with A" and coends commute with colimits in the category of orthogonal
spaces, the diagram stays a coequalizer after (underlying) geometric realiza-
tion. Since coends commute with all colimits, the bottom row of (2.1.8) is a
coequalizer diagram of ultra-commutative monoids. Again the diagram splits
in the underlying category of orthogonal spaces, so the lower diagram is also
a coequalizer diagram of orthogonal spaces. Since the two left vertical mor-
phisms in (2.1.8) are isomorphisms of orthogonal spaces by the special case
above, this proves that the morphism |Bly, — |Blin iS an isomorphism as
well. O

Ultra-commutative monoids form a pointed category: the constant one-point
orthogonal monoid space is a zero object. The enrichment, tensors and coten-
sors over spaces extend to enrichment, tensors and cotensors over the category
of based topological spaces. We shall write R > A for the tensor of an ultra-
commutative monoid R with a based space (A, ap), in order to distinguish it
from the (objectwise) smash product of the underlying based orthogonal space
of R with A. Thus R > A is a pushout, in the category of ultra-commutative
monoids, of the diagram

s —— R®{ap) 22 ReA. 2.1.9)

As may be familiar from similar contexts, the bar construction B(R) of an ultra-
commutative monoid R can be interpreted as R> .S ! the based tensor of R with
the based space S, see (2.5.30) below. Another way to say this is that the bar
construction is the internal suspension in the category of ultra-commutative

monoids. We show a more general statement and consider a based simplicial
set A. We define a simplicial object of ultra-commutative monoids by

Bm(R7A) = R[>Am 4

with simplicial structure induced by that of A. Since A,, is a based set, R> A,
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is in fact a categorical coproduct (i.e., box product) of copies of R, indexed by
the non-basepoint elements of A,,.

The next proposition constructs an isomorphism of ultra-commutative mo-
noids between R > |A| and |B.(R, A)lin, the internal geometric realization. By
Proposition 2.1.7, we can (and will) confuse the internal realization with the
underlying realization of B.(R, A) in the category of orthogonal spaces. Varia-
tions of the following proposition appear in various places in the literature, and
they go back, at least, to the interpretation, by McClure, Schwinzl and Vogt
[117], of the topological Hochschild homology of a commutative ring spec-
trum as the tensor with S'!.

Proposition 2.1.10. Let R be an ultra-commutative monoid and A a based
simplicial set. Then R > |A| is an internal realization of the simplicial ultra-
commutative monoid Bo(R, A).

Proof The geometric realization |A| is a coend of the functor
A®xA — T., ([m],[n]) — A, AAL.

Since the functor R > — preserves colimits, R &> |A] is a coend, in the category
of ultra-commutative monoids, of the functor

A® XA — umon, ([m],[n]) — R> (A, AAL).
The isomorphisms
R (A, AAY) = R>A,)B>A, = R>A,)®A" = B,(A,R)QA"

are natural in ([m], [n]) € A°? X A, and they show that R > |A| is an internal
realization of the simplicial ultra-commutative monoid B.(R, A). O

Now we approach the global model structure on the category of ultra-commu-
tative monoids. We will establish this model structure as a special case of a
lifting theorem for model structures to categories of commutative monoids that
was formulated by White [188, Thm. 3.2]. Like its predecessor for associative
monoids [146, Thm. 4.1 (3)], the input is a cofibrantly generated symmetric
monoidal model category that satisfies the monoid axiom. However, lifting
a model structure to commutative monoids is more subtle and needs extra
hypotheses; the essence of the additional condition is that, loosely speaking,
symmetric powers must be ‘sufficiently homotopy invariant’. Earlier, Gorchin-
skiy and Guletskii [64] had also studied symmetric power constructions in a
symmetric monoidal model category, and there is a substantial overlap in the
arguments of [64] and [188].

We let C be a symmetric monoidal category with monoidal product ®. To
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simplify the exposition we follow the usual abuse and suppress the associativ-
ity and unit isomorphisms from the notation, i.e., we pretend that the underly-
ing monoidal structure is strict (i.e., a permutative structure). Weleti : A — B
be a C-morphism and arrange the n-fold ®-power of i into an n-dimensional
cube K"(i) in C, i.e., a functor
K'() : Pln) — C
from the poset category of subsets of {1,2,...,n} and inclusions to C. More
explicitly, if S € {1,2,...,n} is a subset, then the vertex of the cube at § is
. . A ifj¢s
K" - . h -
HES) =CirvCr,®---®C, wit oF { B ifjes.

All morphisms in the cube K" (i) are R-products of identities and copies of the
morphism i : A — B. The initial vertex of the cube is K"(i)(0) = A®" and the

terminal vertex is K"(i)({1,...,n}) = B®".
We denote by Q"(i) the colimit of the punctured cube, i.e., the cube K" (i)
with the terminal vertex removed, and by ™" : Q"(i) — K"()({1,...,n}) =

B®" the canonical morphism, an iterated pushout product morphism. Indeed,
for n = 2 the cube K%(i) is a square and looks like

ARA—2_ArB

BxRA——BRKRB
Bwi
Hence
7 = ini = BrRIHU(ARB) : BRAUpjga ARB — BRB.

Similarly, i3 is the morphism from the colimit of the punctured cube to the
terminal vertex of the following cuboid:

ARARA Amdal ARARB
ARIRB
i@@\\ \\\\\
IRARA ARBXA - AXBRXB
ARBRI
limAmB
BmA®mA_22A% BRARB imBRB
\ iRBRA W\
BRIRA
BxBxA BrBxRB

BrBRi

We observe that the symmetric group %, acts on Q"(i) and B®" by permuting
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the factors, and the iterated pushout product morphism ™" : Q"(i) — B®" is
¥,-equivariant. We recall from [64] the notions of symmetrizable cofibration
and symmetrizable acyclic cofibration.

Definition 2.1.11. [64, Def. 3] Let C be a symmetric monoidal model category.
A morphism i : A — B is a symmetrizable cofibration (or a symmetrizable
acyclic cofibration) if the morphism

iM%, + Q"()/X, — B™/E, =P"(B)
is a cofibration (or an acyclic cofibration) for every n > 1.

Since the morphism i”! /X, is the original morphism i, every symmetrizable
cofibration is in particular a cofibration and every symmetrizable acyclic cofi-
bration is in particular an acyclic cofibration. We will now proceed to prove
that in the category of orthogonal spaces, all cofibrations and acyclic cofibra-
tions in the positive global model structure are symmetrizable with respect to
the box product. The next proposition will be used to verify this for the gen-
erating acyclic cofibrations. We recall from Construction 1.2.15 that given a
morphism j: A — B, the set Z(j) consists of all pushout product maps

c(Haix : A X DFUyope Z(j) x AD* — Z(j) x DF

of the mapping cylinder inclusion c(j) : A — Z(j) with the sphere inclusions
for k > 0.

Proposition 2.1.12. Let C be a symmetric monoidal topological model cate-
gory.

(1) For every n > 1 the functor P" preserves the homotopy relation on mor-
phisms and it preserves homotopy equivalences.

(i1) Let j: A — B be a symmetrizable acyclic cofibration between cofibrant
objects. Then for every k > 0, the pushout product map

jOix © Ax D* Uyope Bx 0DF — B x DF

is a symmetrizable acyclic cofibration.

(iii) Let j : A — B be a morphism between cofibrant objects such that
the morphism P"(j) : P*(A) — P*(B) is a weak equivalence for every
n > 1. Then every morphism in the set Z(j) is a symmetrizable acyclic
cofibration.

Proof (i) This is the topological version of [64, Lemma 1]. For every object
A of C and every space K the morphism

AT K 2B pm k= (A X K
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is X,-equivariant (with respect to the trivial X,-action on K in the source) and
factors over a natural morphism

A:PA)XK = A" xK)/Z, — (AXK)™/S, = PYAXK).

If H: AXx[0, 1] — B is a homotopy from a morphism f = H(—, 0) to another
morphism g = H(—, 1), then the composite

A P*(H)
P'(A) x[0,1] —» P"(Ax[0,1]) — P"(B)

is a homotopy from the morphism P"(f) to P"(g). So P" preserves the homo-
topy relation, and hence also homotopy equivalences.

(ii)) We argue by induction on k. For k£ = 0 the pushout product map jOiy
is isomorphic to j, hence a symmetrizable acyclic cofibration by hypothesis.
Now we assume the claim for some k, and deduce it for k + 1. Since j is
a symmetrizable acyclic cofibration between cofibrant objects, the morphism
P"(j) is a weak equivalence for every n > 1 by [64, Cor. 23]. Since the functors
P" preserve the homotopy relation and the projections A x D¥ —s A and B x
D¥ —s B are homotopy equivalences, the morphism P"(j x D) is a weak
equivalence for every n > 1. So jx D* : Ax D¥ — B x DF is a symmetrizable
acyclic cofibration, again by [64, Cor.23]. We write D! = DX Uype DX as
the union of the upper and lower hemisphere along the equator. The upper
morphism in the pushout square

Dfxj

Dt xA———= D xB
DM x A —— D' x AU,y DX X B
is a symmetrizable acyclic cofibration by the previous paragraph. The class
of symmetrizable acyclic cofibrations is closed under cobase change by [64,
Thm. 7 (A)]; the lower morphism is thus a symmetrizable acyclic cofibration.
The square

A X DK Uyope BXx DK —— % Bx Dk

| |

k+1 k k+1
AXOD™ Uy pe BX DY o B x oD
is a pushout. The upper morphism is a symmetrizable acyclic cofibration by
the inductive hypothesis, hence so is the lower morphism, again by stability
under cobase change. The morphism j x dD**! : A x dD**! — B x D!
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is thus the composite of two symmetrizable acyclic cofibrations, hence a sym-
metrizable acyclic cofibration itself, by [64, Thm. 7 (C)]. As a cobase change,
the morphism

Ax D' — A X DM Uugpiet B X ODF!

is then a symmetrizable acyclic cofibration by [64, Thm. 7 (A)]. The induced
morphism

P"(A x DMy — P"(A x DM Uyygpiet B x DX

is then a weak equivalence by [64, Cor.23]. Since P"(j x D¥!) : P"(A x
DMy — P"(B x D**1) is a weak equivalence, so is the morphism

P"(jQiks1) @ P"(A x DM Uppgpin B X DY) — PY(B x D**1y .

One more time by [64, Cor. 23], this shows that jOi;,; is a symmetrizable
acyclic cofibration. This completes the induction step.
(iii) Since A and B are cofibrant, the mapping cylinder inclusion

c(j) : A — (Ax[0,1])V; B =Z(j)

is a cofibration. Moreover, the projection Z(j) — B is a homotopy equiva-
lence, hence so is P"(Z(j)) — P"(B) for every n > 1. Since P"(j) is a weak
equivalence by hypothesis, the morphism P"(c(j)) : P*(A) — P"(Z(j)) is a
weak equivalence for every n > 1. So ¢(j) is a symmetrizable acyclic cofibra-
tion by [64, Cor. 23]. Applying (ii) to the morphism c(j) yields the claim. O

Now we can verify the symmetrizability of cofibrations and acyclic cofibra-
tions for the positive global model structure of orthogonal spaces. The cofibra-
tion part (i) is in fact slightly stronger in that it does not need any positivity
hypothesis.

Theorem 2.1.13. (i) Let i : A — B be a flat cofibration of orthogonal
spaces. Then for every n > 1 the morphism

/%, o Q"()/X, — BY'/Z,

is a flat cofibration. In other words, all cofibrations in the global model
structure of orthogonal spaces are symmetrizable.

(1) Leti: A — B be a positive flat cofibration of orthogonal spaces that is
also a global equivalence. Then for every n > 1 the morphism

i"/x, o Q"X — B¥'/Z,

is a global equivalence. In other words, all acyclic cofibrations in the
positive global model structure of orthogonal spaces are symmetrizable.
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Proof (i) We recall from the proof of Proposition 1.2.10 the set
I = {G(Om)/H X ir) | m,k > 0,H < O(m)}

of generating flat cofibrations of orthogonal spaces, where i, : dD¥ — D
is the inclusion. The set I®'" detects the acyclic fibrations in the strong level
model structure of orthogonal spaces. In particular, every flat cofibration is a
retract of an I*"-cell complex. By [64, Cor. 9] or [188, Lemma A.1], it suffices
to show that the generating flat cofibrations in I*" are symmetrizable.

The orthogonal space G,,(O(m)/H X K) is isomorphic to Lyr» X K, so we
show more generally that every morphism of the form

LG,V X ik . LG,V X 6Dk — LG,V X Dk

is a symmetrizable cofibration, where V is any representation of a compact Lie
group G. The symmetrized iterated pushout product

Loy x i)™ /2y + Q"(Lgy Xi)/Zy — Loy x i)™ /Z, (2.1.14)
is isomorphic to
Lz, 6 (i{") Ly, (Q"(i0) — Ly, (DY,
where
i o Q") — (DY

is the n-fold pushout product of the inclusion i, : dD* — DK, with respect to
the cartesian product of spaces. Here the wreath product X, ¢ G acts on V" by

(o3 815 »gn) “(Viheey V) = (g(r’l(l)v(r*‘(l)s cees g(r*‘(n)vfr’l(n)) .

The map #i" is X,-equivariant, and we claim that ;" is a cofibration of X,-
spaces. One way to see this is to exploit the fact that i; is homeomorphic to
the geometric realization of the inclusion ¢, : dA[k] — A[k] of the bound-
ary of the simplicial k-simplex. So if" is X,-homeomorphic to the geometric
realization of the inclusion LE" 1 Q" (,g) — A[k]" of Z,,-simplicial sets. The ge-
ometric realization of an equivariant embedding of simplicial sets is always an
equivariant cofibration of spaces, so altogether this shows that ;" is a cofibra-
tion of X,-spaces. Proposition B.14 (i) then shows that " is also a cofibration
of (X, ! G)-spaces via restriction along the projection £, : G — Z,. So the
morphism (2.1.14) is a flat cofibration.

(ii) Theorem 1.2.21 describes a set J*" U K of generating acyclic cofibrations
for the global model structure on the category of orthogonal spaces. From this
we obtain a set J* U K™ of generating acyclic cofibrations for the positive

global model structure of Proposition 1.2.23 by restricting to those morphisms
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in J" U K that are positive cofibrations, i.e., homeomorphisms in level 0. So
explicitly, we set

J" = {G(Om)/H X ji)|m=1,k>0,H < O@m)},
where ji : D¥ x {0} — D* x [0, 1] is the inclusion, and

K* = U Zpcvw) -
G VW : V#0

the set of all pushout products of sphere inclusions i, with the mapping cylinder
inclusions of the global equivalences pg vw : Lg.vew — Lg.v. Here (G, V, W)
runs through a set of representatives of the isomorphism classes of triples con-
sisting of a compact Lie group G, a non-zero faithful G-representation V and an
arbitrary G-representation W. By [64, Cor. 9] or [188, Lemma A.1] it suffices
to show that all morphisms in J* U K* are symmetrizable acyclic cofibrations.

We start with a morphism G,,(ji X O(m)/H) in J*. For every n > 1, the
morphism

(Gu(O(m)/H X i)™ /%,

is a flat cofibration by part (i), and a homeomorphism in level O because m > 1.
Moreover, the map ji is a homotopy equivalence of spaces, so G,,(O(m)/HX ji)
is a homotopy equivalence of orthogonal spaces; the morphism P"(G,,(O(m)/ Hx
Jjr)) is then again a homotopy equivalence for every n > 1, by Proposition
2.1.12 (). Then [64, Cor. 23] shows that G,,(O(m)/H X j;) is a symmetrizable
acyclic cofibration. This takes care of the set J*.

Now we consider the morphisms in the set K*. Since G acts faithfully on
the non-zero inner product space V, the action of the wreath product X, ¢ G on
V" is again faithful. So the morphism

PG yrwn Ly yrewn — Ly,
is a global equivalence by Proposition 1.1.26 (ii). By the isomorphism
P'"(Lgy) = Lgy/Z: = Ly »

the morphism ps, G y» w» is isomorphic to P"(pg,v.w) : P"(Lgvew) — P"(Lg.v).
which is thus a global equivalence. Proposition 2.1.12 (iii) then shows that all
morphisms in Z(pg,v,w) are symmetrizable acyclic cofibrations. O

The hypothesis in Theorem 2.1.13 (ii) that i is a positive flat cofibration
is really necessary. Indeed, the unique morphism p : Lr — * to the
terminal orthogonal space is a global equivalence, and the source and target
of p are flat, but only the source is positively flat. Then the mapping cylinder
inclusion c(p) : Lg — C(Lg) is a global equivalence between flat orthogonal
spaces, but it is not a homeomorphism at 0. And indeed, for no n > 2 is the
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morphism P"(Lg) — P"(C(Lg)) a global equivalence, because the source is
isomorphic to Ly, z» = BgX,, whereas the target is homotopy equivalent to the
terminal orthogonal space.

Now we put all the pieces together and prove the global model structure for
ultra-commutative monoids. We call a morphism of ultra-commutative monoids
a global equivalence (or positive global fibration) if the underlying morphism
of orthogonal spaces is a global equivalence (or fibration in the positive global
model structure).

Theorem 2.1.15 (Global model structure for ultra-commutative monoids).

(i) The global equivalences and positive global fibrations are part of a cofi-
brantly generated, proper, topological model structure on the category of
ultra-commutative monoids, the global model structure.

(ii) Let j : R — S be a cofibration in the global model structure of ultra-
commutative monoids.

(a) The morphism of R-modules underlying j is a cofibration in the global
model structure of R-modules of Corollary 1.4.15 (i).

(b) The morphism of orthogonal spaces underlying j is an h-cofibration,
and hence a closed embedding.

(¢) If the underlying orthogonal space of R is flat, then j is a flat cofibra-
tion of orthogonal spaces.

Proof (i) The positive global model structure of orthogonal spaces estab-
lished in Proposition 1.2.23 is cofibrantly generated and monoidal (by Proposi-
tion 1.4.12 (iv)). The ‘unit axiom’ also holds: we let f : I — = be any positive
flat replacement of the monoidal unit, the constant one-point orthogonal space.
Then for every orthogonal space Y the induced morphism fRX : IRY — *RY
is a global equivalence by Theorem 1.3.2 (ii). The monoid axiom holds by
Proposition 1.4.13. Cofibrations and acyclic cofibrations are symmetrizable by
Theorem 2.1.13, so the model structure satisfies the ‘commutative monoid ax-
iom’ in the sense of [188, Def.3.1]. The symmetric algebra functor P com-
mutes with filtered colimits by Corollary 2.1.4. Theorem 3.2 of [188] thus
shows that the positive global model structure of orthogonal spaces lifts to the
category of ultra-commutative monoids.

The global model structure is topological by Proposition B.5, where we take
G as the set of free ultra-commutative monoids P(Lgyr~) for all m > 1 and all
closed subgroups H of O(m), and we take Z as the set of acyclic cofibrations
P(c(pc.viw)) for the mapping cone inclusions c(pg,yvw) of the global equiva-
lences pgvw : Levew — Lg,v, indexed by representatives as in the defini-
tion of the set K*. Since weak equivalences and fibrations of ultra-commutative
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monoids are defined on underlying orthogonal spaces, and since pullbacks of
ultra-commutative monoids are created on underlying orthogonal spaces, right
properness is inherited from the positive global model structure of orthogonal
spaces (Proposition 1.2.23). We defer the proof of left properness until after
the proof of part (ii).

(i1) For (a) we recall that the global model structure on the category of R-
modules is lifted, via the free and forgetful adjoint functor pair, from the abso-
lute global model structure of Theorem 1.2.21. By Corollary 1.4.15 (i) and (ii)
this model structure of R-modules is a cofibrantly generated monoidal model
category that satisfies the monoid axiom. Moreover, the unit object R is cofi-
brant; for this it is relevant that we have lifted the absolute model structure
(as opposed to the positive model structure). We claim that all cofibrations in
this model structure are symmetrizable with respect to the box product of R-
modules. By [64, Cor. 9] or [188, Lemma A.1] it suffices to show this for a set
of generating cofibrations, which can be taken to be of the form R ® i for i in a
set of flat cofibrations of orthogonal spaces (for example the set I*'" defined in
the proof of the strong level model structure, Proposition 1.2.10). A box prod-
uct, over R, of free R-modules induced from orthogonal spaces is isomorphic
to the free R-module generated by the box product of underlying orthogonal
spaces:

RX)Rr(RRY) 2= RR(XRY)

Since R ® — is a left adjoint, it commutes with pushouts and orbits by Z,-
actions. Hence the analogous statement carries over to symmetrized iterated
box products. In other words, for every morphism i : A — B of orthogo-
nal spaces there is a natural isomorphism in the arrow category of R-modules
between

RR)H™/Z, : QMRRI)/S, — PLURRB)

and

R®(i"/%,) : Rr(Q"()/Z,) — RrP'(B).

If i is a flat cofibration of orthogonal spaces, then so is the morphism i?"/X,,
by Theorem 2.1.13 (i). So the morphism R ® (i""/X,) is a cofibration of R-
modules, hence so is the morphism (R ® i)7#"/%,. This completes the proof
that all cofibrations in the global model structure for R-modules of Corollary
1.4.15 (i) are symmetrizable with respect to Xg.

Now we apply Corollary 3.6 of [188]; there is a slight caveat here, because
the hypotheses ask for the validity of the ‘strong commutative monoid axiom’
(Definition 3.4 of [188]), which requires the symmetrizability of both the cofi-
brations and the acyclic cofibrations. Since the model structure on R-modules
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was lifted from an absolute model structure, it is not the case that all acyclic
cofibrations are symmetrizable. However, [ 188, Cor. 3.6] and its proof are only
about cofibrations, and don’t involve the weak equivalences at all. So the proof
of [188, Cor. 3.6] only needs the symmetrizability of the cofibrations, which
we just established for the global model category of R-modules of Corollary
1.4.15 (i). Since R is cofibrant as an R-module, [188, Cor. 3.6] shows that for
every cofibrant commutative R-algebra S, the structure morphismi : R — §
is a cofibration of R-modules. Part (i) now follows because commutative R-
algebras are morphisms of ultra-commutative monoids with source R. More
precisely, the category of commutative R-algebras is isomorphic to the cat-
egory of ultra-commutative monoids under R. Moreover, a commutative R-
algebra S is cofibrant if and only if the structure morphismi : R — S isa
cofibration of ultra-commutative monoids.

(b) This is a combination of part (a) and the fact, proved in Corollary 1.4.15 (i),
that all cofibrations of R-modules are h-cofibrations of orthogonal spaces.

(c) This is a combination of part (a) and the fact, also proved in Corollary
1.4.15 (i), that if R itself is flat, then all cofibrations of R-modules are flat
cofibrations of orthogonal spaces.

If remains to prove left properness of the model structure. Pushouts in a
category of commutative algebras are given by the relative monoidal product.
For ultra-commutative monoids this means that a pushout square has the form

[ —— A

jijT

——————f—*>AS Xp T
SRR f

< xy

where S and T are considered as R-modules by restriction along j and f, re-
spectively. For left properness we now suppose that j is a cofibration and f is
a global equivalence. By part (a) of (ii), the morphism j is then a cofibration
of R-modules in the global model structure of Corollary 1.4.15 (i). Since R is
cofibrant in that model structure, also S is cofibrant as an R-module. Proposi-
tion 1.4.16 then shows that the functor S Rz — preserves global equivalences.
So the cobase change S Ry f of f is a global equivalence. This shows that the
global model structure of ultra-commutative monoids is left proper. O

2.2 Global power monoids

In this section we investigate the algebraic structure that an ultra-commutative
multiplication produces on the Rep-functor m,(R). Besides an abelian monoid
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structure on nOG(R) for every compact Lie group G, this structure includes
power operations and transfer maps. We formalize this algebraic structure un-
der the name ‘global power monoid’, see Definition 2.2.8. Theorem 2.2.24 then
says that global power monoids are precisely the natural algebraic structure,
i.e., they parametrize all natural operations on m,(R) for ultra-commutative
monoids. In Construction 2.2.29 we introduce the transfer maps, which are an
equivalent way of packaging the power operations in a global power monoid;
the main properties of the transfers are summarized in Proposition 2.2.30.

Given an orthogonal monoid space R (not necessarily commutative) with
multiplication morphism g : R® R — R and a compact Lie group G, we
define a binary operation

+ AR x5 (R) — 7§ (R) (2.2.1)
on the G-equivariant homotopy set of R as the composite
SR x7$(R) — aS(RyR) > aSR).

The pairing X was defined in Construction 1.5.15. If we expand the definition,
it boils down to the following explicit recipe: if V and W are G-representations
and x € R(V)® and y € R(W)© are G-fixed-points that represent two classes in
ng (R), then [x] + [y] is represented by the G-fixed-point

uyw(x,y) € R(VoW).

We write the pairing on the equivariant homotopy sets of R additively

because we will mostly be interested in commutative orthogonal monoid
spaces. Obviously, the additive notation is slightly dangerous for non-commu-
tative orthogonal monoid spaces, because there the pairing need not be com-
mutative.

The following properties of the operation ‘+°‘ are direct consequences of
the corresponding properties of the pairings ‘X’, compare Proposition 1.5.17;
a direct proof from the explicit definition of the operation ‘+’ above is also
straightforward.

Corollary 2.2.2. Let R be an orthogonal monoid space.

(i) For every compact Lie group G the binary operation + makes the set
ﬂg(R) a monoid.
(i1) If the multiplication of R is commutative, then so is the operation +.
(iii) The restriction map " : ng(R) — ng (R) associated to a continuous
homomorphism « : K — G between compact Lie groups is a monoid
homomorphism.
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Now we turn to special features that happen for ultra-commutative monoids.
If the multiplication on an orthogonal monoid space R is commutative, then
this does not only imply commutativity of the monoids nOG(R); strict commu-
tativity of the multiplication also gives rise to additional power operations that
we discuss now. An important special case later on will be the multiplicative
ultra-commutative monoid Q°R arising from an ultra-commutative ring spec-
trum R. In this situation the power operations satisfy further compatibility con-
ditions with respect to the addition and the transfer maps on 7,(Q°R) = 7 (R);
altogether this structure makes the Oth equivariant homotopy groups of an
ultra-commutative ring spectrum a global power functor.

Construction 2.2.3. We let R be an ultra-commutative monoid, G a compact
Lie group and m > 1. We construct a natural power operation

[ml : 2SR — m"°(R) (2.2.4)

that is an equivariant refinement of the map x — m - x.
We recall that the wreath product %, ! G of a symmetric group Z,, and a
group G is the semidirect product

2,0G = X, <G"

formed with respect to the action of Z,, by permuting the factors of G™. So the
multiplication in X, ! G is given by

(03 815 -58m) - (5 kiy oo k) = (075 grkis -+ -5 8rompkim) -
For every G-space E, the wreath product X, ¢ G acts on the space E™ by
(0—; 815 »gm) ' (61, cees em) = (gtr"(l)e(r"(l)a ceey grf*'(m)eorl(m)) .

For every G-representation V, this action even makes V" a (Z,,2G)-representation.
We let

Hv.v : RV)X---xR(V) — RVe&®---®V)
denote the (V,..., V)-component of the iterated multiplication map of R, and
we observe that this map is (£, G)-equivariant because the multiplication of R

is commutative. If x € R(V) is a G-fixed-point representing a class in ﬂ'g(R),
then (x,...,x) € R(V)" is a (Z,, ¢ G)-fixed-point. So its image under the map

[ml((x]) = v, v(x,...,0) € ©"°(R).

.....

i, wR@)X), .., R@)X) = Ry, v(x,...,x) € RW"™C .
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Since ¢™ : V" — W™ is a (Z,, ! G)-equivariant linear isometric embedding,
this element represents the same class in ng"’ZG(R) as uy, v(x,...,x), so the
class [m]([x]) only depends on the class of x in ﬂOG(R). We have thus constructed
a well-defined power operation (2.2.4).

The power operations are clearly natural for homomorphisms ¢ : R — § of
ultra-commutative monoids, i.e., for every compact Lie group G, every m > 0
and all x € 7§ (R) the relation

[ml(p«(x)) = @.([m](x))
holds in 75"%(S).

The power operations [m] satisfy various properties reminiscent of the map
X — m-x in an abelian monoid. We formalize these properties into the concept
of a global power monoid. In the definition we need certain homomorphisms
between different wreath products, so we fix notation for these now. We use
the plus symbol for the ‘concatenation’ group monomorphism

+ Z,‘XZJ' — EHJ‘
defined by

o(k) for1 <k <i, and

ok-i)+i fori+l1<k<i+}j.

(c+0)k) = {

This operation is strictly associative, so we will leave out parentheses. The
operation + is not commutative, but the permutations o + ¢’ and o’ + ¢ differ
by conjugation with the (7, j)-shuffle. An embedding of a product of wreath
products is now defined by

D;; 1 ZG) x (Z;16) —  ZilG (2.2.5)
(o3 815,80, (05 Giv1s -2 8ix)) F (C+ 05 815, 8i4)) -
Another group monomorphism
b 2%, — Zin
is defined by
(08T, TN = Dm+ j) = (o() — Dm +7i(j)

for1 <i<kand1 < j<m. This yields an embedding of an iterated wreath
product

P Tk (S G) — Sim L G (2.2.6)

(05 (13 8", (1 8) > (ob(r, .. 10); g+ + D).
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Here each ¢’ = (g%, ...,g’,) is an m-tuple of elements of G, and

g' +---+gk = (g},...,g,'n,g%,...,gi,...,g’f,...,gkm)

denotes the concatenation of the tuples.

Remark 2.2.7. The formula for the homomorphism f : ¥, ¢ ¥, — %, may
seems slightly ad hoc, but it can be motivated in a more conceptual way as a
composite

The first monomorphism sends (o; 71, ..., Tx) to the permutation of the prod-
uct set {1,...,k} x{1,...,m} defined by
@) — (@), () -
The second isomorphism is conjugation by the lexicographic ordering
{1,... bk} x{1,....m} = {1,...,km}, (,j) +— (—Dm+j.

The use of the lexicographic ordering (and hence the precise formula for the
homomorphism }) is not essential here: if we use a different bijection between
the sets {1,...,k} x{1,...,m}and {1,..., km}, then the homomorphisms § and
Wi change by inner automorphisms. So the conjugacy classes of ij and Wy,
(but not the actual homomorphisms) are canonical. Since we will always hit
Yy.» with functors that are invariant under conjugation, this should motivate
the construction being reasonably natural.

Definition 2.2.8. A global power monoid is a functor
M : Rep® — AbMon

from the opposite of the category Rep of compact Lie groups and conjugacy
classes of continuous homomorphisms to the category of abelian monoids,
equipped with monoid homomorphisms

[m] : M(G) — MZ,:G)

for all compact Lie groups G and m > 1, called power operations, that satisfy
the following relations.

(i) (Identity) The operation [1] is restriction along the preferred isomor-
phism X :G =G, (1;8) — g.

(i) (Naturality) For every continuous homomorphism « : K — G between
compact Lie groups and every m > 1 the relation

[mloa® = (Zy @) o[m]

holds as homomorphisms M(G) — M(Z,, ¢ K).
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(ii1) (Transitivity) For all compact Lie groups G and all k,m > 1 the relation
Wi, 0 lkm] = [k]o[m]

holds as homomorphisms M(G) — M(Z; ¢ (£, ¢ G)), where ¥y, is the
monomorphism (2.2.6).

(iv) (Additivity) For all compact Lie groups G, allm > i > 0 and all x € M(G)
the relation

©;,_([ml(x) = pi[il(x)) + py([m —il(x)

holds in M((Z;tG) X (%,,-itG)), where @; ,_; is the monomorphism (2.2.5)
and

p1 (EG)X(EZp—tG) — G and  py 1 (ZRG)X(EZ,-iG) — X, G
are the two projections.

A morphism of global power monoids is a natural transformation of abelian
monoid-valued functors that also commutes with the power operations [m] for
allm > 1.

Remark 2.2.9. In any abelian Rep-monoid M we can define external pairings
®: MG)xMK) — M(GxK) by x@y = ps(x)+px(),

where pg : GX K — G and pg : G X K — K are the two projections. In this
notation, the additivity requirement in Definition 2.2.8 becomes the relation

®;,,_(Iml(x) = [il(x) ®[m—i](x). (2.2.10)

In a global power monoid, the power operations are also additive with respect
to the external addition: for all compact Lie groups G and K and all m > 1, and
all classes x € M(G) and y € M(K) the relation

[ml(x®y) = A"([m](x) ® [m](y))
holds in M(%,, ¢ (G X K)), where A is the ‘diagonal’ monomorphism
A Z,0(GXK) — En1G) X (ZnK) (2.2.11)
(03 (@1, k1), (8mo ki) = (03 812 8m)s (075 ks ki)
Indeed, A factors as the composite
T (G X K) N (Em L (G X K)) X (Z 2 (G X K))

Cntp6)XEmipk)
P (Zm 1 G) X (Z 1K) .
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So

Imlxey) = [ml(pg(x) + () = [ml(pg(x) + [ml(pk ()
Em tpe) (Im](x) + ¢ pr)" (Im1())

= A5, (6xx0(Em 1 p6) (Iml(x)) & (2 ¢ pr) " (Im1(1)))
= A, o0 (B 1 p6) X (E 2 pr)) (Im](x) & [m](y))
A*([m](x) & [m](y) -

The class [m](x) is an equivariant refinement of m-x = x+. . .+x (m summands)
in the following sense. Applying the relation (2.2.10) repeatedly shows that
[m](x) restricts to the external m-fold sum

xX®...0x € M(G™)

on the normal subgroup G of ¥, ! G. Restricting further to the diagonal takes
the m-fold external sum to m - x in M(G).

We will soon discuss that the power operations of an ultra-commutative
monoid define a global power monoid. One aspect of this is the additivity
of the power operations, which could be shown directly from the definition.
However, we will use this opportunity to establish a very general (and rather
formal) additivity result that we will use several times in this book. We let C
be a category with a zero object and finite coproducts. We let X V Y be a co-
product of two objects X and Y with universal morphisms i : X — X V Y and
j:Y—>XVvVYIff:X — Aandg:Y — A are two morphisms with
common target, we denote by f + g : X VY — A the unique morphism that
satisfies (f +g)i= fand (f+ g)j = g.

We call a functor from C to the category of abelian monoids reduced if
it takes every zero object in C to the trivial monoid. We call the functor F
additive if for every pair of objects X, ¥ of C the map

(Fddx +0), F(O+1dy)) : F(XVY) — F(X)XF(Y)
is bijective (and hence an isomorphism of monoids).

Proposition 2.2.12. Let C be a category with a zero object and finite coprod-
ucts and

F,.G : C — AbMon

two reduced functors to the category of abelian monoids. Suppose that the
Sfunctor G is additive. Then every natural transformation of set-valued functors
from F to G is automatically additive.

Proof Welett: F — G be a natural transformation of set-valued functors.
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We consider two classes x,y € F(X). Weleti,j : X — X V X be the two
inclusions into the coproduct. We claim that

Txvx(F)(x) + F(H) = G (Tx(x0) + G()(Tx (1) (2.2.13)

in the abelian monoid G(X V X). Indeed,

G(Idx +0)(rxvx (F(@)(x) + F()H())) = x(F(Idx +0O)(F()(x) + F())(¥))
x(F(Idx)(x) + FO)(y)) = 7x(x)
Gdx)(Tx(x)) + G(0)(7x(x))

= G(Idx +0)(G()(tx(x)) + G((Tx (1))

in G(X). Similarly,

G0 +1Idx)(Txvx(F()(x) + F()(¥)) = G(O+Idx)(G(D)(Tx(x) + G()(Tx(¥) -

Since G is additive, this shows the relation (2.2.13). We let V = (Id+1d) :
X V X — X denote the fold morphism, so that

F(V(F@)(x) + F(H(y) = F(V)(x) + F(Vj)(y) = x+y.

Then

x(F(V)(F()(x) + F(H(y)

G(V)(Txvx (F@)(x) + F()H()))

GG (Tx(x) + G()H(Tx (1))

G(Vi)(tx(x) + G(Vj)(tx(y)) = 7x(x) + 7x(y) - o

Tx(x+y)

(2.2.13)

Proposition 2.2.14. Let R be an ultra-commutative monoid. Then the binary
operations (2.2.1) and the power operations (2.2.4) make the Rep-functor n,(R)
a global power monoid.

Proof Corollary 2.2.2 shows that the binary operations (2.2.1) make the Rep-
functor 7,(R) a functor to the category of abelian monoids. The coproduct of
ultra-commutative monoids is given by the box product, so the two reduced
functors

7T0G s ﬂngG : umon —> AbMon

are additive by Corollary 1.5.20. Since the power operation [m] : ng(R) —
nimlG(R) is natural in R, Proposition 2.2.12, applied to the category of ultra-
commutative monoids, shows that [m] is additive. The identity (i), natural-
ity (ii), transitivity (iii) and additivity property (iv) in Definition 2.2.8 of global

power monoids are straightforward, and we omit the proofs. m}
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Example 2.2.15. We let M be a commutative topological monoid. Then the
constant orthogonal space M is naturally an ultra-commutative monoid. More-
over, the equivariant homotopy functor 7,(M) is constant with value mo(M),
and monoid structure induced from the multiplication of M. The power opera-
tion

[ml : mo(M) = 7§ (M) — 75" (M) = 7o(M)

then sends an element x to m - x.

Example 2.2.16 (Naive units of an orthogonal monoid space). Every orthog-
onal monoid space R contains an interesting orthogonal monoid subspace R™,
the naive units of R. The value of R™ at an inner product space V is the union
of those path components of R(V) that are taken to invertible elements, with
respect to the monoid structure on my(R), under the map

R(V) — m(R(V)) — #G(R) .

In other words, a point x € R(V) belongs to R™(V) if and only if there is an
inner product space W and a point y € R(W) such that

puw(xy) € RVOW)  and  uyy(,x) € RWeV)

are in the same path component as the respective unit elements. We omit the
verification that the subspaces R"*(V) indeed form an orthogonal monoid sub-
space of R as V varies. The induced map

1,(R™) — m,(R)

is also an inclusion, and the value 7§(R"™) at the trivial group is, by construc-
tion, the set of invertible elements of 7((R). For a general compact Lie group
G’

ﬂg(R”X) = {xe ng(R) | reng(x) is invertible in 715 (R)}

is the submonoid of ﬂ'g(R) of elements that become invertible when restricted
to the trivial group. So contrary to what one might suspect at first sight, nOG (R™)
may contain non-invertible elements and the orthogonal monoid space R™ is
not necessarily group-like; this is why we use the adjective ‘naive’.

Example 2.2.17 (Units of a global power monoid). Every global power mo-
noid M has a global power submonoid M* of units. The value M*(G) at a
compact Lie group G is the subgroup of invertible elements of M(G). Since
the restriction maps and the power operations are homomorphisms, the sets
M*(G) are closed under restriction maps and power operations. So for varying
G, the subgroups M*(G) indeed form a global power submonoid of M.

We say a global power monoid N is group-like if the abelian monoid N(G)
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is a group for every compact Lie group G. If f : N — M is a homomorphism
of global power monoids and N is group-like, then the image of f is contained
in M*. So the functor M +— M* is right adjoint to the inclusion of the full
subcategory of group-like global power monoids.

If R is an ultra-commutative monoid, then we introduce a global topological
version R* of the units in Construction 2.5.18 below. This construction comes
with a homomorphism of ultra-commutative monoids R* — R that realizes
the inclusion of the units of 7,(R), compare Proposition 2.5.19.

Example 2.2.18 (Group completion of a global power monoid). A morphism
Jj : M — M* of global power monoids is a group completion if for every
group-like global power monoid N the map

J° : (global power monoids)(M*, N) — (global power monoids)(M, N)

is bijective. Since the pair (M™*, j) represents a functor, it is unique up to pre-
ferred isomorphism under M. Every global power monoid M has a group
completion, which can be constructed ‘objectwise’. We define a global power
monoid M* at a compact Lie group G by letting M*(G) be a group com-
pletion (Grothendieck construction) of the abelian monoid M(G), with j(G) :
M(G) — M™*(G) the universal homomorphism. Since the restriction maps
a* : M(G) — M(K) and the power operations [m] : M(G) — M(Z,, 1 G)
are monoid homomorphisms, the universal property provides unique homo-
morphisms «* : M*(G) — M*(K) and [m] : M*(G) — M*(Z,, ! G) such
that

a’0 j(G)=j(K)oa® and  [m]o j(G) = j(Zu1G)o[m].

The functoriality of the restriction maps " and the additional relations re-
quired of a global power monoid are relations between monoid homomor-
phism; so they are inherited by M* via the universal property of group com-
pletion of abelian monoids.

If R is an ultra-commutative monoid, then in Construction 2.5.20 below we
introduce a global topological version R* of the group completion. This con-
struction comes with a homomorphism of ultra-commutative monoids R —
R* that realizes the algebraic group completion, compare Proposition 2.5.21.

Example 2.2.19 (Free ultra-commutative monoid of a global classifying space).
We look more closely at the free ultra-commutative monoid P(ByG) gener-
ated by the global classifying space ByG of a compact Lie group G. For ev-
ery G-representation V, Example 1.3.3 provides an isomorphism of orthogonal
spaces

®km
LG,V = LGm,Vm .
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At an inner product space W, the permutation action of X, on the left-hand
side becomes the action on

Lgnyn(W) = L(V",W)/G™
by permuting the summands in V™. Passage to Z,,-orbits gives an isomorphism
P"(Lgy) = L§y/Zm = Lonyn/Zn = Ly, Gym .
Thus
PLoy) = | ], Lewown -

If G acts faithfully on V and V # 0, then the action of Z,, ¢ G on V" is again
faithful. So in terms of global classifying spaces the free ultra-commutative
monoid generated by B, G is given by

PBaG) = | | BaEn1G). (2.2.20)

The tautological class ug € ﬂOG(BglG) is represented by the orbit of the identity
of Vin

Lev(V)? = MV, V)G,

compare (1.5.11). So the class [m](ug) € ng’”lG(P(BglG)) is represented by the

orbit of the identity of V" in
(Lg, Gy (V") = LV, V")/Z, 0 GY ' s
so with respect to the identification (2.2.20) we have
[ml(ug) = us,.G - (2.2.21)

Example 2.2.22 (Coproducts of ultra-commutative monoids). The category of
ultra-commutative monoids is cocomplete; in particular, every family {R;};c; of
ultra-commutative monoids has a coproduct that we denote R, R;. We claim
that the functor

r, : umon —> (global power monoids)

preserves coproducts. Indeed, if the indexing set [ is finite, then the underlying
orthogonal space of the coproduct ®;_, R; is simply the iterated box product of
the underlying orthogonal spaces. The functor rr,, takes box products of orthog-
onal spaces to the objectwise product of Rep-functors, by Corollary 1.5.20. In
the category of abelian monoids, finite products are also finite coproducts. Co-
products of global power monoids are formed objectwise, so a finite product
of global power monoids is also a coproduct. This proves the claim whenever

the indexing set / is finite.
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In any category, an infinite coproduct is the filtered colimit of the finite co-
products. Moreover, filtered colimits of ultra-commutative monoids are formed
on underlying orthogonal spaces, compare Corollary 2.1.4. So if the set [ is in-
finite, then the underlying orthogonal space of the coproduct is the ‘infinite box
product’ in the sense of Construction 1.5.21, i.e., the filtered colimit, formed
over the poset of finite subsets of I, of the finite coproducts,

’ ~ .
R Ri = colimycyy finiee ®jesR; .

Proposition 1.5.24 thus provides a bijection
[T, 7®) — xS k)

from the weak product of the abelian monoids ng(R,») to the abelian monoid
ng(&lfe ;Ri). For abelian monoids, the weak product is also the direct sum, i.e.,
the categorical coproduct. Since colimits of global power monoids are calcu-
lated objectwise, this proves the claim in general.

Here is another family of global power monoids, with underlying Rep-func-
tor represented by an abelian compact Lie group A. In fact, the next proposition
shows that Rep(—, A) is a free global power monoid subject to a specific set
of explicit ‘power relations’. In Construction 2.3.23 below we exhibit a multi-
plicative model for the global classifying space of A, i.e., an ultra-commutative
monoid that realizes the global power monoid Rep(—, A) on 7.

Proposition 2.2.23. For every abelian compact Lie group A, the Rep-functor
Rep(—, A) has a unique structure of global power monoid. The monoid struc-
ture of Rep(G, A) is given by pointwise multiplication of homomorphisms. The
power operation

[m] : Rep(G,A) — Rep(X,,1G,A)
is given by
[ml(@) = pmoEnta),

where py, : 2, LA — A is the homomorphism defined by p,,(c; ai,...,ay,) =
ai - ...- ay. Moreover, for every global power monoid M the map

(global power monoids)(Rep(—, A), M) — M(A), f+— f(A){dy)

is injective with image those x € M(A) that satisfy [m](x) = p;,(x) for all
m> 1.

Proof Since A is abelian, conjugate homomorphisms into A are already equal,
i.e., we can ignore the difference between homomorphisms and conjugacy
classes. We establish the monoid structure and power operations first, which
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also shows the uniqueness. Since Rep(e, A) has only one element, it is the
additive unit. Since restriction maps are monoid homomorphisms, the trivial
homomorphism is the neutral element of Rep(G, A). The sum

q1+q> € Rep(A XA, A)

of the two projections is a homomorphism from A X A to A whose restriction
along the two maps (—, 1),(1,-) : A — A X A is the identity. The only such
homomorphism is the multiplication i : A X A — A, so we conclude that

q1+q2 = H.
Naturality now gives
a+p = (@.p)(g)+ (@) (q2) = (@B (q1+q2) = (@B (W) = po(a.p).
Since power operations refine power maps, the element
[m](Id4) € Rep(Z,, 1A, A)

restricts to the sum of the m projectionson A” <%, A. Welet1:e — Abe
the unique homomorphism and claim that the composite

PO [m](1da)
Thle — X, LA 2 A

is trivial. Indeed,

[m](dda) o (Zn 2 1) = D) (Im](da)) = [m](1°(dy)) = [m](1) = 1,
since the operation [m] is a monoid homomorphism. Thus

[ml(da)(o; ai, ... am) = [ml(Ida)(os 1,..., 1) - [m](Ada)(15 ay, ... am)

=day... Ay .
In other words, [m](Id4) = p,,. Naturality now gives
[ml(@) = [ml(@’(1da)) = (@) ([m](1da))

i Q’)*(pm) = pmoCula).

It remains to show the existence of the global power monoid structure.
Clearly, pointwise multiplication of homomorphisms makes Rep(G, A) into an
abelian monoid (even an abelian group), and the monoid structure is contravari-
antly functorial in G. When we define [m](@) by the formula of the proposi-
tion, then the remaining axioms of a global power monoid (compare Definition
2.2.8) are similarly straightforward. The identity property (i) is clear, and nat-
urality (ii) follows from the relation

[ml(@) = En @) (Imldda)) .
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The transitivity relation (iii) holds by inspection:

¥, (kml(@)(o; (T3 AY, ... (15, BY))
(Tkm)(@))(Pim(os (713 Y, . .., (14, HY)))

k (m k
l_[[]_[ h,] = [ Jami@)i:
i=1

i=1 \ j=1

(kI(Im) @) (o (z15hY, ... (1, HY)

as does the additivity relation (iv):

O, (M@)o g1, - -+, 8, (05 Gits -+ s 8m))

([ml(@)(o + 075 g1, -, 8m)

(gr)- - a(gm)

()T g1, &) - (Im = @) (O; &is -+ - » gm)

= ([il(a) ® [m = il(@)(T5 g1, - - -> 8 (05 Gists---»8m)) -

It remains to identify the global power morphisms out of Rep(—, A). Since the
class Id4 generates Rep(—, A) as a Rep-functor, the evaluation map in injective.
For surjectivity we consider a class x € M(A) such that [m](x) = p;,(x) for all
m > 1. The Yoneda lemma then provides a unique morphism of Rep-functors

f : Rep(—,A) — M

such that f(A)(Id4) = x, this morphism being given by f(G)(a) = a*(x), for
a : G — A. We need to show that f is a morphism of global power monoids,
i.e., additive and compatible with power operations. For additivity we recall
that

a+f = po(@p) = proinclo(a.p).
Hence
fG)a+p) = (proincl3? o (a.8)"(x)
(@.B) (res2 (p3(0) = (@.B) (res2([21(x))
(@B (x®x) = a"(x) +B'(x) = f(G)a)+ f(G)(B).

This shows that f is a morphism of abelian Rep-monoids. Finally, given a
continuous homomorphism « : G — A, we have

[m](f(G)(@))

[ml(@"(x) = Enta) (ml(x) = Epnta) (p,(x)
(Pm o En )" (x) = ((ml(@)*(x) = fEnG)([ml(@)).

So the morphism f is also compatible with power operations. m}
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Now we are going to show that the restriction maps along continuous group
homomorphisms and the power operations give all natural operations between
equivariant homotopy sets of ultra-commutative monoids. The strategy is the
same as in the analogous situation for orthogonal spaces, see Corollary 1.5.14:
natural operations for ultra-commutative monoids from the functor ﬂg to the
functor 71'(])( biject with the K-equivariant homotopy set of P(BgG), the free
ultra-commutative monoids generated by a global classifying space of G. So
ultimately we need to calculate ng (P(ByG)).

The tautological class ug in ﬂg(BglG) was defined in (1.5.11). We set

uénwn = n.(ug) € ﬂg(P(Bg]G)) s

where 17 : BgG — P(ByG) is the adjunction unit, i.e., the inclusion of the
homogeneous summand for m = 1. The next theorem says in particular that

the global power monoid 7, (P(BgG)) is freely generated by the element u/%"".

Theorem 2.2.24. Let G and K be compact Lie groups.

(i) Every class in 716( (P(BgG)) is of the form o*([ml(uf"™")) for a unique
m > 0 and a unique conjugacy class of continuous homomorphisms « :
K— %, G.

(ii) For every global power monoid M and every x € M(G) there is a unique
morphism of global power monoids f : n,(P(BaG)) — M such that

F@&ug™™) = x.

(iii) Every natural transformation ﬂg — 7T0K of set-valued functors on the

category of ultra-commutative monoids is of the form a* o [m] for a
unique m > 0 and a unique conjugacy class of continuous group ho-
momorphisms a : K — Z,, 1 G.

Proof  For the course of the proof we abbreviate u = u/Z"".

(1) By (2.2.20) the underlying orthogonal space of P(ByG) is the disjoint
union of global classifying spaces for the wreath product groups Z,, ¢ G; more-
over, the class [m](u) lies in the mth summand of P(ByG) and is a universal ele-
ment for By (Z,,:G), by (2.2.21). So part (i) follows from Proposition 1.5.12 (ii)
and the fact that ng commutes with disjoint unions.

(i1) By (i) every element of ﬂ([)( (P(BgG)) is of the form a*([m](u)); every
morphism of global power monoids f : 7 (P(ByG)) — M satisfies

JE (@ ([m]w)) = o (Iml(f(G)W) ,

so f is determined by its value on the class u. This shows uniqueness.
Conversely, if x € M(G) is given, we define f(K) : ng (P(ByG)) — M(K)
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by the formula
FE) @ ([mlw))) = " ([m](x)) .

Then f(G)(u) = x. It remains to show that f is indeed a morphism of global
power monoids. This is a routine — but somewhat lengthy — calculation as
follows. Givena : K — X, Gand @ : K — X, G, we have

o ([mlw)) + a*((nl(w)) = (o, @) (p;([mlIw) + p5([nl(w)))
= (a, @) (D, ,([m + n](w)))

= (Dpp 0 (@, @) ([m + nlw)) .
So f(K) is additive because

JE) (@ ([m](w) + & ([n](w)))

FEY( Py © (@, @) ([m + nl(w)))
(@ © (@, @))"(Im + n](x))

(@, @) (D, ,(Im + n](x)))

(@, @) (py([m](x) + py([n](x)))
a*([ml(x)) + @ ([n](x)

FE)(@ ([ml(w))) + fK)(@ ([n](w))) .

For a continuous homomorphism 8 : L — K we have

B o fFIKN(@" ([mlw)) = B (a"([ml(x))) = (aop) ([ml(x))
= f(L)(a o B)" ([ml(w))) = (f(L)oB)(a"([m](w))) ;

so the homomorphisms f(K) form a natural transformation of Rep-functors.
For k > 1 we have

[k](@"(Im](u))) = (Zx ta")([k]([m]@w)))
= G @)Wy, ([(kml@w) = Fim © Ek v @) (lhm](w) ;

hence

FE Y[kl ([m])) = (Yim © Bk 1 @) ([km](x))

Cx ta) ¥y, ([km](x))) = (Z v )" ([k](Im](x)))
[k](@" (Im](x))) = [KI(f(K)(@ (Im](w)))) .

So the homomorphisms f(K) are compatible with power operations.

(iii) We apply the representability result of Proposition 1.5.13 to the category
of ultra-commutative monoids and the free and forgetful adjoint functor pair:

P : spc =—= umon : U

If G is a compact Lie group, V a G-representation and W a non-zero faith-
ful G-representation, then the restriction morphism pg yw : Lgvew — Lo.w
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is a global equivalence between positive flat orthogonal spaces. We showed
in the proof of Theorem 2.1.13 (ii) that the induced morphism of free ultra-
commutative monoids P(og vw) : P(Lgvew) — P(Lgw) is a global equiva-
lence; in particular, the morphism of Rep-functors x,(P(og,v,w)) is an isomor-
phism. So Proposition 1.5.13 applies and shows that evaluation at the tautolog-
ical class is a bijection

Nat""(n§,ng) — 7§ (P(ByG)), T +— T(u).
Part (i) then completes the argument. O

Remark 2.2.25 (Natural n-ary operations). By similar arguments as in the pre-
vious theorem we can also identify the natural n-ary operations on equivariant
homotopy sets of ultra-commutative monoids. For every n-tuple Gy, ..., G, of
compact Lie groups the functor

Ho(umon) — (sets), X +— JTOG‘(X)xmx;rOG"(X)

is represented by the free ultra-commutative monoid P(ByG I ... I By Gy).
So the set of natural transformations from the functor 7r06‘ X -ee X ﬂOG” to the
functor ﬂ([)( , for another compact Lie group K, bijects with the K-equivariant
homotopy set of this representing object. Because

113

P(BgGi ... U ByG,) = P(ByG1) B -+ RP(ByaGy)
]—[,il ..... n20 Ba(Zj tGy® - B Ba(Z), 1 Gn)

]—L‘l ,,,,, n20 Ba((Z), 1G1) x -+ X (X, 1 Gn))

R

13

the group ﬂg (P(ByG .. .11 By G,)) bijects with the disjoint union of the sets
ng(Bgl((Zj] LG XX (Zj,1Gy) = Rep(K, (Zj, 1Gy) X -+- X (Z;, 1Gyp)) .
So every natural operation from ng‘ XX nOG” to ng is of the form

(1, X)) = @ (i) @ -+ @ [l (xn))

for a unique tuple (ji,. .., j,) of non-negative integers and a unique conjugacy
class of continuous homomorphisms @ : K — (Z;, ¢ G1) X --- X (Zj, 1 Gy,). In
particular, the n-ary operations are generated by unary operations and external
sum.

Construction 2.2.26. We describe an alternative (but isomorphic) way of or-
ganizing the book-keeping of the natural operations between the Oth equivari-
ant homotopy sets of ultra-commutative monoids. We denote by Nat“"" the
category whose objects are all compact Lie groups and where the morphism
set Nat""""(G, K) is the set of all natural transformations, of functors from the
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ultra-commutative monoids to sets, from JTOG to n(’f . We define an isomorphic
algebraic category A", the effective Burnside category. Both Nat*"*"and A"
are ‘pre-preadditive’ in the sense that all morphism sets are abelian monoids
and composition is biadditive. In Nat“"*", the monoid structure is objectwise
addition of natural transformations.

The category A" has the same objects as Na , namely all compact Lie
groups. In the effective Burnside category, the morphism set A*(G, K) is the set
of isomorphism classes of those K-G-spaces that are disjoint unions of finitely
many free right G-orbits. This set is an abelian monoid via disjoint union of
K-G-spaces. Composition is induced by the balanced product over K:

tltm()n

o : AY(K,L)x A"(G,K) — A*(G,L), [T]o[S] = [T xkS].

Here T has a left L-action and a commuting free right K-action, whereas S
has a left K-action and a commuting free right G-action. The balanced product
T Xk S then inherits a left L-action from 7 and a free right G-action from S'.
We define a functor

B : Natum()n SN A+
as the identity on objects; on morphisms, the functor is given by
B : Nat""(G,K) — A™(G,K), B(a"o[m]) = [@"({l,...,m}xG)sl.

In the definition we use the characterization of the natural operations given by
Theorem 2.2.24 (iii). Also, we consider {1,...,m} X G as a right G-space by
translation; the wreath product %, ¢ G acts from the left on {1, ...,m} X G by

(O—’ 815 ’gm) : (l’ 7) = (O-(Z)’ 8i- 7) . (2227)
Then we let K act by restriction of the (Z,, ! G)-action along .

Proposition 2.2.28. The functor B : Nat""" — A" is additive and an iso-
morphisms of categories.

Proof We start by showing that the map B : Nat*""(G, K) — A" (G, K) is
additive. The map
d1,...,kkxG) I ({1,...,m}xG) — @

k.m

dl,....k+m} xG)

that is the inclusion on the first summand and given by (j,g) — (k + j, g) on
the second summand is an isomorphism of ((Z; ¢ G) X (X, t G))-G-bispaces.
Restriction along the homomorphism (8, @) : K — (Z;1G) X (Z,,1G) provides
an isomorphism of K-G-spaces between

B ({1,....kxG)g Ua"({1,...,mXG)g and (@ 0B, @) ({1,. .., k+m}xG)g .
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This shows that
B((B o[kD)+(a"o[m])) = B(Prmo(B, @) olk+m]) = B(B o[k]) + B(a"o[m]).

The identity operation in Nat“"*"(G, G) can be written as Idg; o[1]; on the other
hand, the G-bispace Idg;({1} X G)¢ is isomorphic to G under left and right
translation. Since the isomorphism class of G is the identity of G in A™, the
construction B preserves identities.

For the compatibility of B with composition we consider another operation
B o [k] € Nat"""(K, M) and observe that

B olkho (@ o[m]) = (Yimo (Exta)op)’ olkm].
Moreover, an isomorphism of M-G-spaces
B(1,.... ki xK)xga"({l,..., m}xG) = (YimoEra)oB) (l,...,km}xG)
is given by
(0,0, V] — (= Dm+o()-1,8;-7),
where
akk) = (05 815.--,8m) € ZnlG.

So B is a functor, which is bijective on objects by definition.

To see that B is full we let S be any K-G-space that is a disjoint union of m
free right G-orbits. We choose a G-equivariant homeomorphism

v S — {l,....mIxG.

We transport the left K-action from S to {1,...,m} X G along ¥, so that ¢ be-
comes an isomorphism of K-G-spaces. The (Z,,:G)-actionon {1,...,m}xG de-
fined in (2.2.27) identifies the wreath product with the group of G-equivariant
automorphisms of {1, ..., m}XG; so the K-action on {1,...,m}xG corresponds
to a continuous homomorphism @ : K — X, ¢ G. Altogether, S is isomorphic
toa™({l,...,m} xG)g.

If the K-G-spaces constructed from a* o [m] and 8* o [n] are isomorphic,
then we must have m = n. Moreover, a K-G-isomorphism

a{l,...,m}xG) = B{l,...,m} xG)g

is given by the action of a unique element w € %, ¢ G, and then the homomor-
phisms @, : K — X, G are conjugate by w. So the functor B is faithful. O

Now we define transfer maps trg : M(H) — M(G) in global power
monoids, for every subgroup H of finite index in a compact Lie group G. As
we will see in Proposition 2.2.30 below, the set of operations from nOG to 7T0K is
a free abelian monoid with an explicit basis involving transfers.
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Construction 2.2.29 (Transfer maps). In the following we let M be a global
power monoid, G a compact Lie group and H a closed subgroup of G of finite
index m. We choose an ‘H-basis’ of G, i.e., an ordered m-tuple g = (g1,...,8&m)
of elements in disjoint H-orbits such that

G = UZI gl .

The wreath product Z,, ¢ H acts freely and transitively from the right on the set
of all such H-bases of G, by the formula
(gl» ce 7gm) ' (0—; hla ey hm) = (ga'(l)hl’ ey go'(m)hm) .

We obtain a continuous homomorphism ¥; : G — Z,, ¢ H by requiring that
Y-8 =8 Y.

We define the transfer trg : M(H) — M(G) as the composite

M) ™ ME,  H) — MG).

Any other H-basis is of the form gw for a unique w € Z,, ¢ H. We have
Ve = co 0 ¥z as maps G — X, ' H, where ¢, (y) = w™'yw. Since inner
automorphisms induce the identity in any Rep-functor, we conclude that

V=¥ : ME, H) — M(G).
So the transfer trg does not depend on the choice of basis g.

The various properties of the power operations imply certain properties of
the transfer maps. Moreover, the last item of the following proposition shows
that power operations in a global power monoid are determined by the transfer
and restriction maps.

Proposition 2.2.30. The transfer homomorphisms of a global power monoid
M satisfy the following relations, where H is any subgroup of finite index in a
compact Lie group G.

(i) (Transitivity) We have ttS = Idyyc) and for nested subgroups H C G C F
G (&)
of finite index the relation

F G _  F
trpotry = try

holds as maps M(H) — M(F).
(i1) (Double coset formula) For every subgroup K of G (not necessarily of
finite index) the relation

G G _ K 5 H
resgotry = Z trgney 0(Cg)™ O T€SEeny
[gleK\G/H
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holds as homomorphisms M(H) — M(K). Here [g] runs over a set of

representatives of the finite set of K-H-double cosets.

(iii) (Inflation) For every continuous epimorphism a : K — G of compact
Lie groups the relation

a’o trg = trk o(aly)”
holds as maps from M(H) to M(K), where L = o' (H).
(iv) For every m > 1 the mth power operation can be recovered as

[m] = tri’"zG oq",
where K is the subgroup of Z,, ¢ G consisting of all (o; g1,...,8m) such
that o(m) = m, and q : K — G is defined by q(o; g1,...,8m) = &m-

Proof (i) For G = H we can choose the unit 1 as the G-basis, and with this
choice ¥| : G — X ¢ G is the preferred isomorphism that sends g to (1; g).
The restriction of [1](x) along this isomorphism is x, so we get trg(x) =x.

For the second claim we choose a G-basis f = (fi,..., fi) of F and an
H-basis g = (g1,...,8mn) of G. Then

fg = (flgl,---,flgm, fzgls'--’fzgm’ e .fkgl"-'9.ﬁ€gm)

is an H-basis of F. With respect to this basis, the homomorphism ¥z : F —
Yim U H equals the composite

¥ pRa O Yim
F —%:G — 1, H) — X, H

where the monomorphism ¥y, was defined in (2.2.6). So

trh, = Wi o lkm] = Wso (T tWy) o ¥y, o [km]
= ‘I’;}o (ZrtWe) olklo[m] = ‘I’}o [k] O‘I’z, o[m] = trgotrg .
(i) We choose representatives gi, ..., g, for the K-H-double cosets in G.

Then we choose, foreach 1 <i < r, a (K N % H)-basis
ko= (k... k)

of K, where s; = [K : KN$%H]. Then s1 +---+ s, = m =[G : H] is the index
of H in G, and this data provides an H-basis of G, namely

g = (kigr, ....kLg1. kiga, ...k g0, . K gy . K 8
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The following diagram of group homomorphisms then commutes:

. \{J,
incl G 3 Zm VH

K
(Prrseess ‘Vkr)l TCD.;I ...... sr

[T, =, W (KN%H) I, =, tH

[1%5;0cq;

The right vertical morphism is the generalization of the embedding (2.2.5) to
multiple factors. From here the double coset formula is straightforward:
resg oty = resf oW} o [m]
(g, teg) o Wr, .., (Bg teg) o W) o CI);’“_’X" o [m]
22100 = (B, teg) o P, ..., (Es teg) oY) o([si]@ - @ [s.])

r
D W 0 (Zy teg) o Lsi]
i=1
r r
* * K * H
= > Wholsiloley) = Yty olcy) orestlny -
i=1 i=1

(iii) If & = (ky, ..., k) is an L-basis of K, then a(k) = (a(k)), ..., a(k,)) is
an H-basis of G. With respect to these bases we have

lI‘oz(l_c) ca = (Zm ¢ (a'|L)) o \Pl} K — z:m LH .

So

a*otrg = a" oV . o[m]

a(k) lP}: o (Xt (a'/lL))>k o [m]

¥ o [m] o (al)" = trf o(alL)” .

(iv) The subgroup K has index m in X, G and a K-basis of 2,2 G is given by
the elements 7; = ((j,m); 1,...,1) for j = 1,...,m. In order to determine the
monomorphism ¥z : £,0G — X,,1K associated with this K-basis, we consider
any element (o; g1, ..., &gm) of £,,0G. The permutation (o(j), m)-o-(j,m) € Z,,
fixes m, so the element

li = 1oy (05 815, 8m) " Tj € G
in fact belongs to the subgroup K. Then
(03 81528 Tj = Ta( -1
in the group X, ¢ G, by definition. This means that

(05815 58m) (T Tw) = (T, T) - (05 Ly D)
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and hence
Yi(o; 81ser8m) = (03 iy ) .
Because
Cmt (Y205 815, 8m)) = Em @03 by ly) = (05 8155 8m) 5
we conclude that the composite (X,, ¢ g) o ¥z is the identity of Z,, ¢ G. So

ZntG
@ oq* = Wio[mlog

Wi o (S,1q)" o [m]
(Eniq@o¥) o[ml = [ml. @

Theorem 2.2.24 (iii) gives a description of the set of natural operations, on
the category of ultra-commutative monoids, from 7r0G to nOK . The next propo-
sition gives an alternative description that also captures the monoid structure
given by pointwise addition of operations.

Proposition 2.2.31. Let G and K be compact Lie groups. The monoid Nat""" (71'06, 71(1){ )
is a free abelian monoid generated by the operations trf oa™ where (L, @) runs
over all (K X G)-conjugacy classes of pairs consisting of

o a subgroup L < K of finite index, and
e a continuous group homomorphism « : L — G.

Proof This a straightforward algebraic consequence of the calculation of the
category Nat""*" given in Proposition 2.2.28. Every K-G-space with finitely
many free G-orbits is the disjoint union of transitive K-G-spaces with the same
property. So A*(G, K) is a free abelian monoid with basis the isomorphism
classes of the transitive K-G-spaces. A transitive K-G-space with finitely many
free G-orbits is isomorphic to one of the form

KXo G = (KxG)/(kl, g) ~ (k,a(D)g)

for a pair (L,a : L — G), with L of finite index in K. Moreover, K X, G
is isomorphic to K X, G if and only if (L, @) is conjugate to (L’,a’) by an
element of K X G. So A*(G, K) is freely generated by the classes of the K-G-
spaces K X, G, where (L, @) runs through the (K X G)-conjugacy classes of the
relevant pairs.

The claim then follows from the verification that the isomorphism of cate-
gories B : Nat"””" — A* established in Proposition 2.2.28 takes the operation
trk o to the class of K X, G. Indeed, if k = (ki, ..., ky) is an L-basis of K and
Y; : K — X, ¢ L the classifying homomorphism, then

B(trf o) = B(W;o[mloa") = B(Y; o (Zyta) o[m]).
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On the other hand, the map
(Enta) oY) ({l,...,m}xG)g — KX, G, (i,y) +— lki,y]
is an isomorphism of K-G-bispaces, so B(trg oa®) = [KX,G]in A*(G,K). O

2.3 Examples

In this section we discuss various examples, mostly of a geometric nature,
of ultra-commutative monoids, and several geometrically defined morphisms
between them. We start with the ultra-commutative monoids O and SO (Ex-
ample 2.3.6), U and SU (Example 2.3.7), Sp (Example 2.3.9) and Spin and
Spin° (Example 2.3.10), all made from the corresponding families of classical
Lie groups. All of these are examples of ‘symmetric monoid-valued orthogonal
spaces’ in the sense of Definition 2.3.4, a more general source of examples of
ultra-commutative monoids. The additive Grassmannian Gr (Example 2.3.12),
the oriented variant Gr® (Example 2.3.15) and the complex and quaternionic
analogs Gr® and Gr™ (Example 2.3.16) consist — as the names suggest — of
Grassmannians with monoid structure arising from direct sum of subspaces.
The multiplicative Grassmannian Grg (Example 2.3.18) is globally equivalent
as an orthogonal space to Gr, but the monoid structure arises from the tensor
product of subspaces; the global projective space P is the ultra-commutative
submonoid of Grg consisting of lines (1-dimensional subspaces). The global
projective space P is a multiplicative model of a global classifying space for
the cyclic group of order 2, and Example 2.3.23 describes multiplicative mod-
els of global classifying spaces for all abelian compact Lie groups. Example
2.3.24 introduces the ultra-commutative monoid F of unordered frames, with
monoid structure arising from disjoint union. The ultra-commutative ‘multi-
plicative monoid of the sphere spectrum’ Q°S is introduced in Example 2.3.26;
this a special case of the multiplicative monoid of an ultra-commutative ring
spectrum, and we return to the more general construction in Example 4.1.16.

Construction 2.3.1 (Orthogonal monoid spaces from monoid-valued orthog-
onal spaces). Our first series of examples involves orthogonal spaces made
from the infinite families of classical Lie groups, namely the orthogonal, uni-
tary and symplectic groups, the special orthogonal and unitary groups, and the
pin, pin‘, spin and spin® groups. These orthogonal spaces have the special fea-
ture that they are group-valued; we will now explain that a group-valued (or
even just a monoid-valued) orthogonal space automatically leads to an orthog-
onal monoid space. In the cases of the orthogonal, special orthogonal, unitary,
special unitary, spin, spin® and symplectic groups, these multiplications are
symmetric, so those examples yield ultra-commutative monoids.
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Definition 2.3.2. A monoid-valued orthogonal space is a monoid object in the
category of orthogonal spaces.

Since orthogonal spaces are an enriched functor category, monoid-valued
orthogonal spaces are the same thing as continuous functors from the category
L to the category of topological monoids and continuous monoid homomor-
phisms (i.e., monoid objects in the category T of compactly generated spaces).

Now we let M be a monoid-valued orthogonal space. In (1.3.1) we intro-
duced a lax symmetric monoidal natural transformation

pxy : XRY — XXY

from the box product to the cartesian product of orthogonal spaces. For X =
Y = M we can form the composite

multiplication
Mam 2 oy 2y (2.3.3)
with the objectwise multiplication of M. Since pyy is lax monoidal, this com-
posite makes M into an orthogonal monoid space with unit the multiplicative
unit 1 € M(0). The morphism (2.3.3) corresponds, via the universal property
of ®, to the bimorphism whose (V, W)-component is the composite

M(iv)XM(iw) multiply
MWV)XMW) ——— MVeW)xMVeW) —— MVeWw),
where iy : V — Ve Wandiy : W — V & W are the direct summand
embeddings. If f : M — M’ is a morphism of monoid-valued orthogonal
spaces (i.e., a morphism of orthogonal spaces that is objectwise a monoid ho-
momorphism), then f is also a homomorphism of orthogonal monoid spaces
with respect to the multiplications (2.3.3).

If M is a commutative monoid-valued orthogonal space, then the associ-
ated ®-multiplication is also commutative, simply because the transformation
px.y is symmetric monoidal. However, there is a more general condition that
provides M with the structure of an ultra-commutative monoid.

Definition 2.3.4. A monoid-valued orthogonal space M is symmetric if for all
inner product spaces V and W the images of the two homomorphisms

M(y) : M(V) — M{VeW) and M(iy) : M(W) — MV e W)
commute.

We emphasize that the objectwise multiplications in a symmetric monoid-
valued orthogonal space need not be commutative — we’ll discuss many inter-
esting examples of this kind below. The proof of the following proposition is
straightforward from the definitions, and we omit it.
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Proposition 2.3.5. Let M be a symmetric monoid-valued orthogonal space.
Then the multiplication (2.3.3) makes M an ultra-commutative monoid.

Example 2.3.6 (Orthogonal group ultra-commutative monoid). We denote by
O the orthogonal space that sends an inner product space V to its orthogonal
group O(V). A linear isometric embedding ¢ : V — W induces a continuous
group homomorphism O(p) : O(V) — O(W) by conjugation and the identity
on the orthogonal complement of the image of ¢. Construction 2.3.1 then gives
O the structure of an orthogonal monoid space. The (V, W)-component of the
bimorphism

pvw : O(V) X O(W) — OV e W)

is direct sum of orthogonal transformations. The unit element is the identity of
the trivial vector space, the only element of O(0). So O is a symmetric group-
valued orthogonal space, and hence it becomes an ultra-commutative monoid.

If G is a compact Lie group and V a G-representation, then the G-action on
the group O(V) is by conjugation, so the fixed-points O(V)¢ are the group
of G-equivariant orthogonal automorphisms of V. Moreover, O(1U;) is the
orthogonal group of U, i.e., R-linear isometries of U (not necessarily G-
equivariant) that are the identity on the orthogonal complement of some finite-
dimensional subspace; the G-action is again by conjugation. Any G-equivariant
isometry preserves the decomposition of Ug into isotypical summands, and
the restriction to almost all of these isotypical summands must be the identity.
The G-fixed subgroup is thus given by

O(Us)’ = 0%Ug) = [ ], 0%t
where the weak product is indexed by the isomorphism classes of irreducible
orthogonal G-representations A, and U, is the A-isotypical summand. If the
compact Lie group G is finite, then there are only finitely many isomorphism
classes of irreducible G-representations, so in that case the weak product coin-
cides with the product.

Irreducible orthogonal representations come in three different flavors, and
the group O%(U,) has one of three different forms. If A is an irreducible or-
thogonal G-representation, then the endomorphism ring Homg(/l, A) is a finite-
dimensional skew field extension of R, so it is isomorphic to either R, C or H;
the representation A is accordingly called ‘real’, ‘complex’ or ‘quaternionic’,
respectively. We have

O if disreal,
0%(Uy) = 0°(A°) = {U if Ais complex, and

Sp  if A is quaternionic.
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So we conclude that the G-fixed-point space O(T;)C is a weak product of
copies of the infinite orthogonal, unitary and symplectic groups, indexed by the
different types of irreducible orthogonal representations of G. Since the infinite
unitary and symplectic groups are connected, only the ‘real’ factors contribute
to mo(O(Up)®) = 7§(0), which is a weak product of copies of 7o(0) = Z/2
indexed by the irreducible G-representations of real type.

There is a straightforward ‘special orthogonal’ analog: the property of hav-
ing determinant 1 is preserved under conjugation by linear isometric embed-
dings and under direct sum of linear isometries, so the spaces SO(V) form an
ultra-commutative submonoid SO of O. Here, SO(U;) is the group of R-linear
isometries of Uy (not necessarily G-equivariant) that have determinant 1 on
some finite-dimensional subspace V of U and are the identity on the orthog-
onal complement of V.

Example 2.3.7 (Unitary group ultra-commutative monoid). There is a straight-
forward unitary analog U of O, defined as follows. We recall that

Ve = CegrV

denotes the complexification of an inner product space V. The euclidean inner
product {(—, —) on V induces a hermitian inner product (—, —) on V¢, defined as
the unique sesquilinear form that satisfies

1Iev,1®w) = (v,w)
for all v,w € V. We now define an orthogonal space U by
uw) = UVo),

the unitary group of the complexification of V. The complexification of every
R-linear isometric embedding ¢ : V — W preserves the hermitian inner
products, so we can define a continuous group homomorphism

U(p) : UV) — UW)

by conjugation with ¢¢ : Vo — W and the identity on the orthogonal com-
plement of the image of ¢¢. The ®-multiplication on U produced by Construc-
tion 2.3.1 is by direct sum of unitary transformations; this multiplication is
symmetric, and hence ultra-commutative. There is a straightforward ‘special
unitary’ ultra-commutative submonoid SU of U; the value SU(V) is the group
of unitary automorphisms of V¢ of determinant 1.

If G is a compact Lie group, then the identification of the G-fixed-points of
U also works much like the orthogonal analog. The outcome is an isomorphism
between U(Ug)® and US(US). Here U = C®x U is the complexified com-
plete universe for G, which happens to be a ‘complete complex G-universe’
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in the sense that every finite-dimensional complex G-representation embeds
into it. The complete complex G-universe breaks up into (unitary) isotypical
summands (LI;C, indexed by the isomorphism classes of irreducible unitary G-
representations A, and the group UG((LIS) breaks up accordingly as a weak
product. In contrast to the orthogonal situation above, there is only one ‘type’
of irreducible unitary representation, and the group U G(ﬂf) is always isomor-
phic to the infinite unitary group U, independent of A. So in the unitary context,
we get a decomposition

,

[, v
[1]

This weak product is indexed by the isomorphism classes of irreducible unitary
G-representations. Since the unitary group U is connected, the set nOG(U) =
71o(U(Us)C) has only one element, and so U is globally connected.

The orthogonal monoid space U comes with an involution

I3

UUs)® = U9 = [ [, voud

vy U — U

by complex conjugation that is an automorphism of ultra-commutative monoids.
The value of ¢ at V is the map

y(V) : UVe) — U(Ve), A +— yyvoAoyy,

where

Yy Ve — Vo, A®v — A®v

is the canonical C-semilinear conjugation map on V.
The complexification morphism is the homomorphism of ultra-commutative
monoids given by

c: 0 —U, c«V): 0V) — UVe), ¢ r— oc.

Complexification is an isomorphism onto the -invariant ultra-commutative
submonoid of U, and it takes SO to SU.

Every hermitian inner product space W has an underlying R-vector space
equipped with the euclidean inner product defined by

(v,w) = Re(v,w),

the real part of the given hermitian inner product. Every C-linear isometric
embedding is in particular an R-linear isometric embedding of underlying eu-
clidean vector spaces. So the unitary group U(W) is a subgroup of the special
orthogonal group of the underlying euclidean vector space of W. We can thus
define the realification morphism

r : U — sh3(S0) (2.3.8)
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at V as the inclusion (V) : U(Ve) — O(C® V). Here shg denotes the multi-
plicative shift by C as defined in Example 1.1.11.

Example 2.3.9 (Symplectic group ultra-commutative monoid). There is also a
quaternionic analog of O and U, the ultra-commutative monoid Sp made from
symplectic groups. Given an R-inner product space V, we denote by

Ve = Her V

the extension of scalars to the skew field H of quaternions. The extension
comes with a H-sesquilinear form

[-,-]1 : Vux Vg — H characterizedby [1®v,1®w] = (v,w)
for all v, w € V. The symplectic group
Sp(V) = Sp(Vw)

is the compact Lie group of H-linear automorphisms A : Vi — Vy that leave
the form invariant, i.e., such that

[Ax, Ay] = [x,¥]

for all x,y € Vy. The H-linear extension gy = H®g ¢ : Vg — Wy of an
R-linear isometric embedding ¢ : V — W preserves the new inner products,
so we can define a continuous group homomorphism

Sp(e) : Sp(V) — Sp(W)

by conjugation with ¢y and the identity on the orthogonal complement of the
image of ¢y. As for O and U, the ®R-multiplication on Sp produced by Con-
struction 2.3.1 is by direct sum of symplectic automorphisms; so Sp is sym-
metric, hence ultra-commutative.

If G is a compact Lie group, then the identification of the G-fixed-points
of Sp also works much like the orthogonal case. Quaternionic representations
decompose canonically into isotypical summands, and this results in a product
decomposition for the G-fixed subgroup

Sp(U)® = (Sptig)® = [, Sptd)°

where the weak product is indexed by the isomorphism classes of irreducible
quaternionic G-representations A, and ‘UEH is the A-isotypical summand in ‘LIIC?;]I =
H ®r Ug. As in the real case, irreducible quaternionic representations A come
in three different flavors, depending on whether Homﬁ(/l, A) — again a finite-
dimensional skew field extension of R — is isomorphic to R, C or H. As for O,
the G-fixed-point space Sp(Us)C is a weak product of copies of the infinite
orthogonal, unitary and symplectic groups, indexed by the different types of
irreducible quaternionic representations of G.
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Example 2.3.10 (Pin and Spin group orthogonal spaces). Given a real inner
product space V we denote by CI(V) the Clifford algebra of the negative-
definite quadratic form on V, i.e., the quotient of the R-tensor algebra of V
by the ideal generated by v® v + |v|* - 1 for all v € V. The Clifford algebra is
Z/2-graded with the even (or odd) part generated by an even (or odd) number
of vectors from V. The composite

linear summand TV ﬂ CI(V)
is R-linear and injective, and we denote it by v — [v].

We recall that orthogonal vectors of V anti-commute in the Clifford algebra:
given v, v € V with (v, ¥) = 0, then

WIF]+ IVl = (WP - 1+ 1% + D1B] + ]+ (77 - 1+ [1%)

= Pv+9-1+v+7)? = 0.

In CI(V) every unit vector v € S (V) satisfies [v]> = —1, so all unit vectors of V
become units in CI(V). The pin group of V is the subgroup

Pin(V) c CI(V)*

generated inside the multiplicative group of CI(V) by —1 and all unit vectors
of V. A linear isometric embedding ¢ : V — W induces a morphism of Z/2-
graded R-algebras Cl(g) : CI(V) — CI(W) that restricts to ¢ on V. So Cl(y)
restricts to a continuous homomorphism

Pin(¢) : Cl(¢)lpinvy : Pin(V) — Pin(W)

between the pin groups. The map Pin(¢) depends continuously on ¢ and satis-
fies Pin(y) o Pin(y) = Pin(y o ¢), so we have defined a group-valued orthogo-
nal space Pin. Construction 2.3.1 then gives Pin the structure of an orthogonal
monoid space.

Since the group Pin(V) is generated by homogeneous elements of the Clif-
ford algebra, all of its elements are homogeneous. The Z/2-grading of CI(V)
provides a continuous homomorphism Pin(V) — Z/2 whose kernel

Spin(V) = CI(V)ey N Pin(V)

is the spin group of V. The map Pin(yp) induced by a linear isometric embed-
ding ¢ : V — W is homogeneous, so it restricts to a homomorphism

Spin(e) = Pin(p)lspinv) : Spin(V) — Spin(W)

between the spin groups. The spin groups thus form an orthogonal monoid sub-
space Spin of Pin. We claim that Spin is symmetric, i.e., for all inner product
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spaces V and W the images of the two group homomorphisms

. Spin(iv) . Spin(iw) .
Spin(V) —— Spin(Ve W) «——— Spin(W)
commute. Indeed, Spin(V) is generated by —1 and the elements [v][v'] for
v,v' € S(V), and similarly for W. The elements —1 map to the central ele-
ment —1 in Spin(V & W), and

[v,0]- [V, 01 [0, w] - [0,w] = [0,w]-[0,w]-[v,0][V,0]

because [v,0] and [/, 0] anti-commute with [0, w] and [0, w’]. So Spin is an
ultra-commutative monoid with respect to the ®-multiplication of Construction
2.3.1.

In contrast to Spin, the group-valued orthogonal space Pin is not sym-
metric; equivalently, the continuous map

tyw : Pin(V) x P(W) — Pin(V @ W)

is not a group homomorphism. The issue is that for v € S(V) and w € S(W)
the elements [v, 0] and [0, w] anti-commute in Pin(V & W).

Now we turn to the groups pin® and spin®, the complex variations on the pin
and spin groups. These arise from the complexified Clifford algebra C®x C1(V),
where V is again a euclidean inner product space. The complexified Clifford
algebra is again Z/2-graded, and functorial for R-linear isometric embeddings.
The pin® group of V is the subgroup

Pin‘(V) c (C®g CI(V))*

generated inside the multiplicative group by the unit scalars A ® 1 for all A €
U(1) and the elements 1 ® [v] for all unit vectors v € S(V). The pin® groups
form a group-valued orthogonal space Pin‘, and hence an orthogonal monoid
space, in much the same way as do the pin groups above. As for Pin, the
monoid-valued orthogonal space Pin° is not symmetric, so the associated ®-
multiplication of Pin® is not commutative.

Since the group Pin‘(V) is generated by homogeneous elements of the com-
plexified Clifford algebra, all of its elements are homogeneous. So the Z/2-
grading of C®g CI(V) provides a continuous homomorphism Pin“(V) — Z/2
whose kernel

Spin‘(V) = (C®g Cl(V))ey N Pin(V)

is the spin® group of V. As V varies, the spin® groups from a group-valued
orthogonal subspace Spin® of Pin‘. As for Spin, the images of the homomor-
phisms Spin‘(iy) and Spin‘(iy) commute, so Spin® is even an ultra-commuta-
tive monoid.
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We embed the real Clifford algebra CI(V) as an R-subalgebra of its com-
plexification by

W)y=19- : Cl(V) — Cer ClI(V).
This homomorphism restricts to embeddings
(V) : Pin(V) — Pin°(V) and «V) : Spin(V) — Spin‘(V);

as V varies, these maps form morphisms of group-valued orthogonal spaces
¢ : Pin — Pin‘ and ¢ : Spin — Spin°, and hence morphisms of orthogonal
monoid spaces. These morphisms extend to isomorphisms

Pin x(.; U(1) = Pin° and Spin X,y U(1) = Spin°

of orthogonal monoid spaces.

We let @ : CI(V) — CI(V) denote the unique R-algebra automorphism of
the Clifford algebra such that a[v] = —[v] for all v € V. The map « is the
grading involution, i.e., it is the identity on the even part and —1 on the odd
part of the Clifford algebra. We also denote by « the automorphism of the
complexification C ®g CI(V) obtained by complexifying the real version. For
every element x € Pin“(V) the twisted conjugation map

¢y : C CIV) — C CLV), cy) = a(x)yx"!

is an automorphism of Z/2-graded C-algebras. We let v € S (V) be a unit vector.
Then twisted conjugation by [v] takes [v] to —[v], and it fixes the elements
[w] for all w € V that are orthogonal to v. So twisted conjugation by [v] ‘is’
reflection in the hyperplane orthogonal to v, hence a linear isometry of V of
determinant —1. The complex scalars are central in C®g CI(V), so conjugation
by elements A® 1 with 2 € U(1) is the identity. So for all elements x € Pin°(V),
the conjugation map c, restricts to a linear isometry on V, in the sense that there
is a unique ad(x) € O(V) satisfying

W™ = [ad@®)E)]
for all v € V. We thus obtain a continuous group homomorphism
ad(V) : Pin(V) — O(V), x + ad(x),

the twisted adjoint representation. The kernel of the twisted adjoint represen-
tation is the subgroup U(1) - 1, compare [4, Thm. 3.17]. This homomorphism
takes the spin® group to the special orthogonal group, and restricts to the ad-
joint representation

ad(V) : Spin“(V) — SO(V). (2.3.11)
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These homomorphisms form morphisms of group-valued orthogonal spaces
ad : Pin® — O and ad : Spin® — SO.

Via Construction 2.3.1 we can interpret these as morphisms of orthogonal
monoid spaces.
There is yet another interesting morphism of group-valued orthogonal spaces

[ : U — shZ(Spin°)
that lifts the forgetful realification morphism (2.3.8) through
shZ(ad) : sh®(Spin“) — sh3(SO).

The definition of I(V¢) is a coordinate-free description of the homomorphism
U(n) — Spin°(2n) that is defined for example in [4, §3, p.10]. Since we don’t
need this, we won’t go into any details. Since both U and Spin® are symmetric
group-valued orthogonal spaces, [ : U — shg(Spin”) is also a homomor-
phism of ultra-commutative monoids. The morphism / takes the special uni-
tary group SU(Vc) to the group Spin(C ® V), so it restricts to a morphism of
ultra-commutative monoids / : SU — shg Spin.
Most of the examples discussed so far can be summarized in the commuta-
tive diagram of orthogonal monoid spaces:
SU incl U
| PN
11 71 N

N

A . A N
Spin —— Spin° —— SO

a
incl l l incl j incl

Pin Pin°¢ (0]

L ad

The two dotted arrows mean that the actual morphism goes to a multiplica-
tive shift of the target. With the exception of Pin and Pin°, all the orthogonal
monoid spaces are ultra-commutative.

Example 2.3.12 (Additive Grassmannian). We define an ultra-commutative
monoid Gr, the additive Grassmannian. The value of Gr at an inner product
space V is

Gr(V) = ]_[mzo Gra(V),

the disjoint union of all Grassmannians in V. The structure map induced by
a linear isometric embedding ¢ : V — W is given by Gr(¢)(L) = ¢(L). A
commutative multiplication on Gr is given by direct sum:

myw : Gr(V)xGr(W) — Gr(Ve W), (L,L')vw+— Lol
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The unit is the only point {0} in Gr(0). The orthogonal space Gr is naturally
N-graded, with the degree m part given by Gr'™/(V) = Gr,,(V). The multipli-
cation is graded in that it sends Gr'™(V) x Gr'"(W) to Gr!™*"\(V & W).

As an orthogonal space, Gr is the disjoint union of global classifying spaces
of the orthogonal groups. Indeed, the homeomorphisms

L(R™,V)/O(m) = Gr'™(V), ¢-0(m) — oR™)

show that the summand Gr!™ is isomorphic to the semifree orthogonal space

Loz Since the tautological action of O(m) on R™ is faithful, this is a global
classifying space for the orthogonal group. So, as orthogonal spaces,

Gr = ]_[mzo BaO(m) .

Proposition 1.5.12 (ii) identifies the equivariant homotopy set ng(Bg10(m))
with the set of conjugacy classes of continuous homomorphisms from G to
O(m); by restricting the tautological O(m)-representation on R, this set bi-
jects with the set of isomorphism classes of m-dimensional G-representations.
In the union over all m > 0, this becomes a bijection between ﬂg(Gr) and
RO*(G), the set of isomorphism classes of orthogonal G-representations.

We make the bijection more explicit, showing at the same time that it is
an isomorphism of monoids. We let V be a finite-dimensional orthogonal G-
representation. The G-fixed-points of Gr(V) are the G-invariant subspaces of
V, i.e., the G-subrepresentations. We define a map

Gr()°® = ||, Gra()° — RO(G)

from this fixed-point space to the monoid of isomorphism classes of G-re-
presentations by sending L € Gr(V)° to its isomorphism class. The isomor-
phism class of L only depends on the path component of L in Gr(V)®, and the
resulting maps 7o(Gr(V)%) — RO*(G) are compatible as V runs through the
finite-dimensional G-subrepresentations of U. So they assemble into a map

7§ (Gr) = colimyeyq,) mo(Gr(V)®) — RO*(G), (2.3.13)

and this map is an isomorphism of monoids with respect to the direct sum of

representations on the target. Moreover, the isomorphism is compatible with

restriction maps, and it takes the transfer maps induced by the commutative

multiplication of Gr to induction of representations on the right-hand side; so

as G varies, the maps (2.3.13) form an isomorphism of global power monoids.
An interesting morphism of ultra-commutative monoids

7:Gr — O (2.3.14)
is defined at an inner product space V as the map

(V) : Gr(V) — O(V), L+ pi.—pL,
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sending a subspace L C V to the difference of the orthogonal projection onto
L+ = V — L and the orthogonal projection onto L. Put differently, 7(V)(L)
is the linear isometry that is multiplication by —1 on L and the identity on
the orthogonal complement L*. We omit the straightforward verification that
these maps do define a morphism of ultra-commutative monoids. The induced
monoid homomorphism

7§(7) : 75(Gr) — 75(0)

is easily calculated. The isomorphism (2.3.13) identifies the source with the
monoid RO*(G) of isomorphism classes of orthogonal G-representations, un-
der direct sum. By Example 2.3.6 the group ﬂOG(O) is a direct sum of copies
of Z/2, indexed by the isomorphism classes of irreducible orthogonal G-rep-
resentations of real type. If A is any irreducible orthogonal G-representation,
then ﬂOG(T) sends its class to the automorphism — Id;. The group O(2)? is iso-
morphic to O(1), U(1) or Sp(1) depending on whether A is of real, complex
or quaternionic type. In the real case, the map —1d, lies in the non-identity
path component; in the complex and quaternionic cases, the group O(1)¢ is
path connected. So under the previous isomorphisms, ﬂOG(T) becomes the ho-
momorphism
RO*(G) — @ 7/2
[A] real

that sends the class of A to the generator of the A-summand if A is of real
type, and to the trivial element if A is of complex or quaternionic type. Since
the classes of irreducible representations freely generate RO*(G) as an abelian
monoid, this determines the morphism ng(r). Moreover, this also shows that
7§ (Gr) — 7§ (0) is surjective.

Example 2.3.15 (Oriented Grassmannian). A variant of the previous example
is the orthogonal monoid space Gr°" of oriented Grassmannians. The value
of Gr®" at an inner product space V is

Grow) = || Gram,

the disjoint union of all oriented Grassmannians in V. Here a point in Gr;, (V)
is a pair (L, [by, ..., by]) consisting of an L € Gr,(V) and an orientation, i.e.,
a GL*(L)-equivalence class [by,...,b,] of bases of L. The structure map in-
duced by ¢ : V — W sends (L, [b1,...,by]) to (o(L), [¢(b1),...obm)]). A
multiplication on Gr® is given by direct sum:
tyw @ Grr"(V) x Gr(W) — Gr*' (Ve W)

(L, [b1,. ... by, (L, [b],...,by]) +—

(Lo L, [(b1,0),...,(54,0),(0,b)),...,(0,b)]) .
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The unit is the only point ({0}, 0) in Gr®(0).
As an orthogonal space, Gr* is the disjoint union of global classifying
spaces of the special orthogonal groups, via the homeomorphisms

(BgSO(m))(V) = L(R™,V)/SO(m) = Gra(V)
@-SO(m) +— (e(R™),[p(er),...plen)]) .

The multiplication of Gr® is not commutative. The issue is that when
pushing a pair around the two ways of the square

Gr3i(V) X Grg (W) —" = Grgr, ,(V & W)

twistl lG’me(TV,W)

Gryf(W) X Gry (V) o Gre  (Wa'V)

then we end up with the same subspaces of W&V, but they come with different
orientations if m and n are both odd.

We can arrange commutativity of the multiplication by passing to the or-
thogonal submonoid Gr°*
fined as

of even-dimensional oriented Grassmannians, de-

Gy = [ ] Gy

or,ev

the multiplication of Gr”*" is then commutative. Moreover, the forgetful map
Gr**® — Gr to the additive Grassmannian is a homomorphism of ultra-
commutative monoids.

Example 2.3.16 (Complex and quaternionic Grassmannians). The complex
additive Grassmannian Gr® and the quaternionic additive Grassmannian Gr™
are two more ultra-commutative monoids, the complex and quaternionic ana-
logs of Example 2.3.12. The underlying orthogonal spaces send an inner prod-
uct space V to

Gré(V) = ]_[mzo GrS(Ve) and Gri(v) = ]_[mzo Gri(V) ,

the disjoint union of all complex (or quaternionic) Grassmannians in the com-
plexification Vo = C®g V (or in Vg = H ®g V). As in the real analog, the
structure maps are given by taking images under (complexified or quaterni-
fied) linear isometric embeddings; direct sum of subspaces, plus identification
along the isomorphism Ve®We = (VW) (or Vg@ Wy = (Ve W)y), provides
an ultra-commutative multiplication on Gr® and on Gr*.

The homogeneous summand Gro!™ is a global classifying space for the
unitary group U(m). Indeed, in Construction 1.3.10 we introduced the ‘com-
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C
U(m),Cm

representation on C™. This orthogonal space is isomorphic to Gr

plex semifree’ orthogonal space L associated to the tautological U (m)-

Clml yia
L@, Ve)/U(m) = Gr™"™(V), ¢-U@m) — ¢(C").

Proposition 1.3.11 (i) then exhibits a global equivalence

~ C ~ C,
BaU(m) = Lygmucny — Lo = Grol.

Although Proposition 1.3.11 (i) does not literally apply to Gr™"™ it has an H-

linear analog for symplectic representations, showing that the homogeneous
summand Gr!"™ is a global classifying space for the symplectic group Sp(m).

The ultra-commutative monoid Gr® comes with an involutive automorphism
¥ @ Gr° — Gr°

given by complex conjugation. Here we exploit the fact that the complexifica-
tion of an R-vector space V comes with a preferred C-semilinear morphism

by 1 Ve — Ve, A®v +— 1®v.

The value of i at V takes a C-subspace L C V¢ to the conjugate subspace L =
Yy (L). Complexification of subspaces defines a morphism of ultra-commutative
monoids

¢ : Gr — Gr°, Gr(V) — Grc(V), L +— L¢

from the real to the complex additive Grassmannian. A complex subspace
of V¢ is invariant under ¢y if and only if it is the complexification of an R-
subspace of V (namely the yy-fixed subspace of V). So the morphism c is an
isomorphism of Gr onto the y-invariant ultra-commutative submonoid (Gr%.
Realification defines a morphism of ultra-commutative monoids

r: Gr° — shS(Gro®)

to the multiplicative shift (see Example 1.1.11) of the even part of the oriented
Grassmannian of Example 2.3.15. The value #(V) : Grc(V) — Gr°®"(V¢)
takes a complex subspace of V¢ to the underlying real vector space, endowed
with the preferred orientation [xy, ixi,..., X,,ix,], where (xi,...,x,) isS any
complex basis.

The isomorphism (2.3.13) between ﬂg(Gr) and RO*(G) has an obvious
complex analog. For every compact Lie group G an isomorphism of commu-
tative monoids

7§(Gr®) = colimyeyqsy mo(Gre(V)) = RU*(G) (2.3.17)

is given by sending the class of a G-fixed-point in Gr°(V), i.e., a complex
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G-subrepresentation of V¢, to its isomorphism class. The isomorphism is com-
patible with restriction maps, takes the involution nOG(w) of ﬂg(GI‘C) to the
complex conjugation involution of RU*(G), and takes the transfer maps in-
duced by the commutative multiplication of Gr® to induction of representa-
tions. So as G varies, the maps form an isomorphism of global power monoids
7_r0(GrC) = RU". The isomorphisms are also compatible with complexification
and realification, in the sense of the commutative diagram:

7, (c) my(r) ~ forge
1,(Gr) 255 7, (Gr®) 25 1 (sh&(GrrY)) == (Gr™) 22 1 (Gr)

(2.3‘13)l5 zj(2.3.l7) El(2.3‘13)

RO* —— RU" RO*

c r

The lower horizontal maps are complexification and realification of represen-
tations. The isomorphism in the upper row is inverse to the one induced by the
homomorphism Gr**®oi : Gr**®¥ — shg(Gr"r’eV), i.e., pre-composition with
the natural linear isometric embedding

iy :V—> Ve, vi— 1Q®v;

or,ev

the morphism Gr°"*' o j is a global equivalence by Theorem 1.1.10.

Example 2.3.18 (Multiplicative Grassmannians). We define an ultra-commuta-
tive monoid Grg, the multiplicative Grassmannian. We let

sym(v) = (P sym'v) = €P)_ VO/E

denote the symmetric algebra of an inner product space V. If W is another
inner product space, then the two direct summand inclusions induce algebra
homomorphisms

Sym(V) — Sym(Ve W) «— Sym(W).

We use the commutative multiplication on Sym(V & W) to combine these into
an R-algebra isomorphism

Sym(V) ® Sym(W) = Sym(V @& W). (2.3.19)

These isomorphisms are natural for linear isometric embeddings in V and W.
The value of Grg at an inner product space V is then

Gro(V) = | | _, GraSym(V),

the disjoint union of all Grassmannians in the symmetric algebra of V. The
structure map Grg(p) : Grg(V) — Grg(W) induced by a linear isometric
embedding ¢ : V — W is given by

Gre(o)(L) = Sym(p)(L),
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where Sym(yp) : Sym(V) — Sym(W) is the induced map of symmetric alge-
bras. A commutative multiplication on Grg is given by tensor product, i.e.,

tvw 1 Grg(V) X Grg(W) — Grg(Ve W)

sends (L,L") € Grg(V) X Grg(W) to the image of L ® L’ under the isomor-
phism (2.3.19). The multiplicative unit is the point R in Grg(0) = R. As the
additive Grassmannian Gr, the multiplicative Grassmannian Grg is N-graded,
with degree n part given by Grg’](V) = Gr,(Sym(V)). The multiplication sends
G (V) x Gr2\(W) to Grl"\(V @ W).

Regarded as orthogonal spaces, the additive and multiplicative Grass-

mannians are globally equivalent. For an inner product space V we let
i : V. — Sym(V) be the embedding as the linear summand of the symmetric
algebra. Then as V varies, the maps

Gr(v) = | | _,Grnv) — ] ,Gru(Sym(V) = Gro(V)

sending L to i(L) form a global equivalence Gr — Gry. Indeed, for each
n>0, Grg’ IVyisa sequential colimit, along closed embeddings, of a sequence
of orthogonal spaces

] __

[n] [n] [n]
Gr" — Gr;] — Gr,, — ... — Gr R

where Gr[S”,J(V) = Gr,,(@fzo Sym/(V)). Each of the morphisms Grl" —
Gr[snlg is a global equivalence by Theorem 1.1.10; so all morphisms in the se-
quence are global equivalences, hence so is the map from Gr!"! to the colimit

Gr™, by Proposition 1.1.9 (ix). This global equivalence induces a bijection
® » DY FTOp g q J
7§(Gr) = 7§(Gre)

for every compact Lie group G, hence both are isomorphic to the set RO*(G) of
isomorphism classes of orthogonal G-representations. The commutative mo-
noid structures and transfer maps induced by the products of Gr and Grg are
quite different though: the monoid structure of JTOG(Gr) corresponds to direct
sum of representations, and the transfer maps are additive transfers; the monoid
structure of JTOG(Gr®) corresponds to tensor product of representations, and the
transfer maps are multiplicative transfers, also called norm maps.

The orthogonal subspace P = Grg] of the multiplicative Grassmannian Grg
is closed under the product and contains the multiplicative unit, hence P is an
ultra-commutative monoid in its own right. Because

P(V) = Grl'(V) = P(Sym(V))

is the projective space of the symmetric algebra of V, we use the symbol P and
refer to it as the global projective space. The multiplication is given by tensor



2.3 Examples 149

product of lines, and application of the isomorphism (2.3.19). Since P = Grg]

is globally equivalent to the additive variant Grl'l, it is a global classifying
space for the group O(1), a cyclic group of order 2:

P = Grl'l = ByO(1) = ByC,.

In other words, P is an ultra-commutative multiplicative model for BgC>.
There is a straightforward complex analog of the multiplicative Grassman-
nian, namely the ultra-commutative monoid Grg with value at V given by

Grs(v) = | |, GraSym(V)o),

the disjoint union of all Grassmannians in the complexified symmetric algebra
of V. The structure maps and multiplication (by tensor product) are as in the
real case. The orthogonal subspace P© = Grg’[l] consisting of 1-dimensional
subspaces is closed under the product and contains the multiplicative unit;
hence PC is an ultra-commutative monoid in its own right, the complex global
projective space. As an orthogonal space, P® is globally equivalent to the ad-
ditive variant Gr™!", and hence a global classifying space for the group U(1),

PC ~ Gr*!" ~ B, U(1). (2.3.20)

Since the multiplication in the skew field of quaternions H is not com-
mutative, there is no tensor product of H-vector spaces; so there is no
multiplicative version of the quaternionic Grassmannian Gr*.

Construction 2.3.21 (Bar construction). For the next class of examples we
quickly recall the bar construction of a topological monoid M. This is the
geometric realization of the simplicial space M* whose space of n-simplices is
M", the n-fold cartesian power of M. Forn > 1 and 0 < i < n, the face map
d: . M" — M"! is given by

(x2,...,%,) fori =0,
di*(xl,...xn) = (xl,...,x,-_l,xi-xi+1,xi+2,...,x,,) f0r0<i<n,
(X1, .ty Xns1) fori = n.

Forn > 1and 0 <i < n - 1 the degeneracy map s : M"! — M" is given by
ST, Xm) = (X, X X, X))
The bar construction is the geometric realization (see Construction A.32)
BM = |M®| = |[n] » M"|

of this simplicial space; the construction M — BM is functorial in continuous
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monoid homomorphisms. The bar construction commutes with products in the
sense that for a pair of topological monoids M and N, the canonical map

(Bpu, Bpy) : B(IM x N) —> BM x BN (2.3.22)

is a homeomorphism, where pyy : M X N — M and py : M X N — N are
the projections. Indeed, this map factors as the composite of two maps

[(P3y-P3)! Upmellpne D)
(M x N)*| —22% |M® x N*| 22220 Mo x N

The first map is the realization of an isomorphism of simplicial spaces, given
level-wise by shuffling the factors. The second map is a homeomorphism be-
cause realization commutes with products, see Proposition A.37 (ii).

Construction 2.3.23 (Multiplicative global classifying spaces). As we dis-
cuss now, all abelian compact Lie groups admit multiplicative models of their
global classifying spaces. We use the bar construction, giving a non-equivariant
classifying space, followed by the cofree functor R (see Construction 1.2.25).
The cofree functor takes a space A to the orthogonal space RA with values

(RAY(V) = map(IL(V,R%),A) .
We endow the cofree functor with a lax symmetric monoidal transformation
tap : RARRB — R(AXB).
To construct u, g we start from the continuous maps
map(L(V,R*), A) x map(L(W,R*), B) el map(L(V,R*) x L(W,R%),A X B)
L map(L(V @ W,R®), A X B)
that constitute a bimorphism from (RA, RB) to R(A X B). Here
resyy : L(V® W,R*) — L(V,R”) x L(W,R*)

restricts an embedding of V@& W to the summands V and W. The morphism pi4 5
is associated to this bimorphism via the universal property of the box product.

The bar construction preserves products in the sense that for every pair of
compact Lie groups G and K the canonical map

(Bpg, Bpx) : B(Gx K) — BG x BK

is a homeomorphism, compare (2.3.22). So the composite G — R(BG) is a lax
symmetric monoidal functor via the morphism of orthogonal spaces

HBG.BK

R(BG)® R(BK) —25 R(BG x BK) = R(B(G X K)) .
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The bar construction is functorial in continuous group homomorphisms, so for
an abelian compact Lie group A the composite

R(BA)® R(BA) — R(B(A X A)) RBew), R(BA)

is an ultra-commutative and associative multiplication on the orthogonal space
R(BA), where s : A X A — A is the multiplication of A. Theorem 1.2.32
shows that for abelian A the cofree orthogonal space R(BA) is a global classi-
fying space for A. In particular, the Rep-functor 7r,(R(BA)) is representable by
A. We saw in Proposition 2.2.23 that there is then a unique structure of a global
power monoid on 7, (R(BA)), and the power operations are characterized by the
relation

[ml(ua) = py,(ua)

where u, € ﬂ’g(R(BA)) is a tautological class and p,, : £, ! A — A is the
homomorphism defined by

P07 A1,y Q) = A1 Gy

Example 2.3.24 (Unordered frames). The ultra-commutative monoid F of un-
ordered frames sends an inner product space V to

F(V) = {A c V| A is orthonormal} ,

the space of all unordered frames in V, i.e., subsets of V that consist of pairwise
orthogonal unit vectors. Since V is finite-dimensional, such a subset is neces-
sarily finite. The topology on F(V) is as the disjoint union, over the cardinality
of the sets, of quotient spaces of Stiefel manifolds. The structure map induced
by a linear isometric embedding ¢ : V — W is given by F(¢)(A) = ¢(A). A
commutative multiplication on F is given, essentially, by disjoint union:

uyw : FV)xFW) — F(Ve W), (A,A) — iy(A)UiyA);

hereiy : V— Ve Wandiy : W — V& W are the direct summand embed-
dings. The unit is the empty set, the only point in F(0). The orthogonal space F
is naturally N-graded, with degree m part F”! given by the unordered frames
of cardinality m; the multiplication sends FU1(V) x FU'N(W) to FU"+1(V @ W).
As an orthogonal space, F is the disjoint union of global classifying spaces
of the symmetric groups. We let X, act on R” by permuting the coordinates,
which is also the permutation representation of the tautological Z,,-action on
{1,...,m}. This X,,-action is faithful, so the semifree orthogonal space Ly, g
is a global classifying space for the symmetric group. The homeomorphisms

LER", V)/Zp = F"(V), @ %, +— {gler),...,plen)}
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show that the homogeneous summand F!" is isomorphic to Ly, zn = BgZu;
here ey, ..., e, is the canonical basis of R™. So as orthogonal spaces,

F=[]  Butu.

Proposition 1.5.12 (ii) identifies the equivariant homotopy set ng(Bglilm) with
the set of conjugacy classes of continuous homomorphisms from G to Z,,; by
restricting the tautological ¥,,-representation on {1, ..., m}, this set bijects with
the set of isomorphism classes of finite G-sets of cardinality m.

As m varies, this gives an isomorphism of monoids from ng(F) to the set
A*(G) of isomorphism classes of finite G-sets that we make explicit now. We
let V be a G-representation. An unordered frame A € F(V) is a G-fixed-point
if and only if it is G-invariant. So for such frames, the G-action restricts to an
action on A, making it a finite G-set. We define a map

F(V)¢ — AYG), A — [A]

from this fixed-point space to the monoid of isomorphism classes of finite G-
sets. The isomorphism class of A as a G-set only depends on the path compo-
nent of A in F(V)®, and the resulting maps mo(F(V)¢) — A*(G) are compat-
ible as V runs through the finite-dimensional G-subrepresentations of Ugs. So
they assemble into a map

7§ (F) = colimyeya) mEFWV)?) — AYG), (2.3.25)

and this map is a monoid isomorphism with respect to the disjoint union of G-
sets on the target. Moreover, the isomorphisms are compatible with restriction
maps, and they take the transfer maps induced by the commutative multiplica-
tion of F to induction of equivariant sets on the right-hand side.

It goes without saying that actions of compact Lie groups are required to

be continuous and that the use of the term ‘set’ (as opposed to ‘space’)
implies the discrete topology on the set; so the identity path component G°
acts trivially on every G-set. Hence the monoids ﬂg (F) and A*(G) only see the
finite group mo(G) = G/G° = G of path components, i.e., for every compact
Lie group G, the inflation maps

P aSF) — 2§F)  and  pt : AYG) — ATG)
along the projection p : G — G are isomorphisms. So if G has positive di-
mension, then the group completion of the monoid A*(G) need not be isomor-

phic to what is sometimes called the Burnside ring of G (the Oth G-equivariant
stable stem).

A morphism of N-graded ultra-commutative monoids

span : F — Gr is defined by span(V)(A) = span(A),
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i.e., a frame is sent to its linear span. The induced morphism of global power
monoids is linearization: the square of monoid homomorphisms

76 (span)
n$(F) — 7$(Gr)
(2.3.25) l/ = = l (2.3.13)
A*(G) ———————RO*(G)
[S]—[RS]

commutes, where the lower map sends the class of a G-set to the class of its
permutation representation.

Example 2.3.26 (Multiplicative monoid of the sphere spectrum). We define
an ultra-commutative monoid Q°S, the ‘multiplicative monoid of the sphere
spectrum’. The notation and terminology indicate that this is a special case
of a more general construction that associates with an ultra-commutative ring
spectrum R its multiplicative monoid Q°R, see Example 4.1.16 below.

The values of the orthogonal space Q2°S are given by

Q°S)(V) = map,(S",5"),

the space of continuous based self-maps of the sphere SV. A linear isometric
embedding ¢ : V — W acts by conjugation and extension by the identity, i.e.,
the map

(Q°S)(¢) : map,(S",8") — map,(S",5")

sends a continuous based map f : §¥ — SV to the composite

W—g(V)
SWa gV Ao T

SYASYV) = gV
The two unnamed homeomorphisms between SV A SW=¢) and SV use the
map ¢ on the factor SY. In particular, the orthogonal group O(V) acts on
map,(S",S") by conjugation.

The multiplication of Q°S is by smash product, i.e., the map

pvw = (QTS)H(V) X (Q*SH(W) — (Q*S) (Ve W)

smashes a self-map of SV with a self-map of SW and conjugates with the
canonical homeomorphism between S ¥ AS W and S V®V. The unit is the identity
of V.

The equivariant homotopy set ng(Q'S) is equal to the stable G-equivariant
0-stem nOG(S), compare Construction 4.1.6 below. The monoid structure on
noc(Q'S) arising from the multiplication on Q°S is the multiplicative (rather
than the additive) monoid structure of ng(S). The set noc(Q'S) thus bijects with
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the underlying set of the Burnside ring A(G) of the group G (compare Exam-
ple 4.2.7), which is additively a free abelian group with basis the conjugacy
classes of closed subgroups of G with finite Weyl group. The multiplication on
ﬂ'g(Q.S) corresponds to the multiplication (not the addition!) in the Burnside
ring A(G). When G is finite, nOG(Q'S) bijects with the underlying set of the
Grothendieck group of finite G-sets, and the multiplication corresponds to the
product of G-sets. The power operations in m,(Q°S) are thus represented by
‘raising a G-set to the cartesian power’, and the transfer maps are known as
‘norm maps’ or ‘multiplicative induction’.

Example 2.3.27 (Exponential homomorphisms). The classical J-homomor-
phism fits in nicely here, in the form of a global refinement to a morphism of
ultra-commutative monoids

J:0 — Q'S
defined at an inner product space V as the map
J(V) : O(V) — map,(s",5")

sending a linear isometry ¢ : V — V to its one-point compactification S¥ :
SV — SV. The fact that these maps are multiplicative and compatible with
the structure maps is straightforward. The induced map

a5 2§0) — 2§(@Q°s) = 75(©S),

for G a compact Lie group, can be described as follows. By Example 2.3.6,
the group ﬂg(O) is a direct sum of copies of Z/2, indexed by the isomorphism
classes of irreducible orthogonal G-representations of real type. If A is such an
irreducible G-representation, then the image of the A-indexed copy of Z/2 is
represented by the antipodal map of §*.

In (2.3.14) we defined a morphism of ultra-commutative monoids 7 : Gr —
0. The composite morphism

Gr 5 0L as (2.3.28)

realizes an ‘exponential’ homomorphism from the real representation ring to
the multiplicative group of the Burnside ring of a compact Lie group G. The ex-
ponential homomorphism was studied by tom Dieck and is sometimes called
the ‘tom Dieck exponential map’. Tom Dieck’s definition of the exponential
homomorphism in [178, 5.5.9] is completely algebraic: we start from the ho-
momorphism

s : ROY(G) — CIG,Z)*, s[VI(H) = (_l)dim(VH)

that sends an orthogonal representation V to the class function s(V) that records
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the parities of the dimensions of the fixed-point spaces. The Burnside ring
embeds into the ring of class functions by ‘fixed-point counting’

® : AG) — CIG,Z), O[SIH) = ||,

i.e., a (virtual) G-set S is sent to the class function that counts the number of
fixed-points. This map is injective, and for finite groups the image can be char-
acterized by an explicit system of congruences [178, Prop. 1.3.5]. The image of
s satisfies the congruences, so there is a unique map exp : RO (G) — A(G)*
such that ® o exp = s. The map s sends the direct sum of representations
to the product of the parity functions, so exp is a homomorphism of abelian
monoids, and thus extends to a homomorphism from the orthogonal repre-
sentation ring RO(G). The morphism of ultra-commutative monoids (2.3.28)
realizes the exponential morphism in the sense that the following diagram of
monoid homomorphisms commutes:

ﬂg(.IOT)
79(Gr) ——" > 70(Q°S) = (1§(S))"

(2.3.13)l: QT:

RO™(G) AG)*

exp

To show the commutativity of this diagram we may compose with the degree
monomorphism

deg : (x$(S)* — CI(G,Z), deg[fI(H) = deg(f":s"" — sV

that takes the class of an equivariant self-map f : §¥ — SV of a representa-
tion sphere to the class function that records the fixed-point dimensions. The
composite deg oa : A(G) — CI(G, Z) coincides with the fixed-point counting
map D, so

degoaoexp = ®oexp = s : RO"(G) — CI(G,2).

On the other hand, the map ﬂ'g(.] o 7) sends the class of a G-representation V

—Idy

to the involution S : 8V — §V. The diagram thus commutes because

deg ((S™14)) = (=1 = S(VI(H).

2.4 Global forms of BO

In this section we discuss different orthogonal monoid spaces whose underly-
ing non-equivariant homotopy type is BO, a classifying space for the infinite
orthogonal group. Each example is interesting in its own right, and as a whole,
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the global forms of BO are a great illustration of how non-equivariant homo-
topy types ‘fold up’ into many different global homotopy types. The different
forms of BO have associated orthogonal Thom spectra with underlying non-
equivariant stable homotopy type MO; we will return to these Thom spectra
in Section 6.1. The examples we discuss here all come with multiplications,
some ultra-commutative, but some only E.-commutative; so our case study
also illustrates the different degrees of commutativity that arise ‘in nature’.

We can name five different global homotopy types that all have the same
underlying non-equivariant homotopy type, namely that of a classifying space
of the infinite orthogonal group:

o the constant orthogonal space BO with value a classifying space of the infi-
nite orthogonal group;

o the ‘full Grassmannian model’ BO, the degree O part of the periodic global
Grassmannian BOP (Example 2.4.1);

e the bar construction model B°O (Construction 2.4.14);

e the ‘restricted Grassmannian model” bO that is also a sequential homotopy
colimit of the global classifying spaces By O(n) (Example 2.4.18); and

¢ the cofree orthogonal space R(BO) associated with a classifying space of the
infinite orthogonal group (Construction 1.2.25).

These global homotopy types are related by weak morphisms of orthogonal
spaces:

@ﬁ-bo

|

B°0 — BO — R(BO)

The orthogonal spaces B°O and BO come with ultra-commutative multiplica-
tions. The global homotopy type of R(BO) also admits an ultra-commutative
multiplication; we will not elaborate this point, but one way to see it is to
extend the cofree functor R to a lax symmetric monoidal functor on the cat-
egory of orthogonal spaces, so that R(BO) is an ultra-commutative monoid
within this global homotopy type. The orthogonal spaces BO and bO admit
E.-multiplications; for BO this is a consequence of the non-equivariant E,-
structure of BO. All weak morphisms above can be arranged to preserve the
E.-multiplications, so they induce additive maps of abelian monoids on nOG for
every compact Lie group G.

As we explain in Example 2.4.17, the bar construction model makes sense
more generally for monoid-valued orthogonal spaces; in particular, applying
the bar construction to the ultra-commutative monoids made from the fami-
lies of classical Lie groups discussed in the previous section provides ultra-
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commutative monoids B°SO, B°U, B°SU B°Sp, B°Spin and B°Spin‘. Exam-
ple 2.4.33 introduces the complex and quaternionic analogs of BO and b0, i.e.,
the ultra-commutative monoids BU and BSp and the E-orthogonal monoid
spaces bU and bSp.

Example 2.4.1 (Periodic Grassmannian). We define an ultra-commutative monoid
BOP that is a global refinement of the non-equivariant homotopy type Z x BO,
and at the same time a global group completion of the additive Grassmannian
Gr introduced in Example 2.3.12. The orthogonal space BOP comes with tau-
tological vector bundles whose Thom spaces form the periodic Thom spectrum
MOP, discussed in Example 6.1.7 below.

For an inner product space V we set

BOP(V) = [ |  Gru(V?),

the disjoint union of the Grassmannians of m-dimensional subspaces in V> =
V & V. The structure map associated with a linear isometric embedding ¢ :
V — Wis given by

BOP(p)(L) = ¢*(L) + (W -¢(V)®0),

the internal orthogonal sum of the image of L under ¢? : V> — W? and the
orthogonal complement of the image of ¢ : V — W, viewed as sitting in the
first summand of W? = W @ W. In particular, the orthogonal group O(V) acts
on BOP(V) through its diagonal action on V2.

We make the orthogonal space BOP an ultra-commutative monoid by en-
dowing it with multiplication maps

uvw : BOP(V)x BOP(W) — BOP(Ve W), (L,L) — kyw(L&L),
where
kyw : VZOW? = (VeW)? isdefinedby «kyw(v,v,w,w) =, w,v,w).

The unit is the unique element {0} of BOP(0).
The orthogonal space BOP is naturally Z-graded: for m € Z we let

BOP" (V) c BOP(V)

be the path component consisting of all subspaces L C V? such that dim(L) =
dim(V) + m. For fixed m the spaces BOP"!(V) form a subfunctor of BOP, i.e.,
BOP!"! is an orthogonal subspace of BOP. The multiplication is graded in the
sense that uy takes BOP™ (V) x BOP!" (W) to BOP"*"\(V @ W). We write
BO = BOP! for the homogeneous summand of BOP of degree 0, which
is thus an ultra-commutative monoid in its own right. The underlying non-
equivariant homotopy type of BO is that of a classifying space of the infinite
orthogonal group.



158 Ultra-commutative monoids

While BOP and the additive Grassmannian Gr are both made from Grass-
mannians, one should beware of the different nature of their structure
maps. There is a variation Gr’ of the additive Grassmannian with values Gr'(V) =
[ 1,50 Gr»(V?) and structure maps Gr’(¢)(L) = ¢*(L). This orthogonal space is
a ‘multiplicative shift’ of Gr in the sense of Example 1.1.11, it admits a com-
mutative multiplication in much the same way as Gr, and the maps

Gr(V) — Gr'(V), L+ L&0

form a global equivalence of ultra-commutative monoids by Theorem 1.1.10.
A source of possible confusion is the fact that Gr’(V) and BOP(V) are equal
as spaces, but they come with very different structure maps making them into
two different global homotopy types.

Example 2.4.2 (Gr versus BOP). In Example 2.3.12 we explained that for
every compact Lie group G, the monoid 7r0G(Gr) is isomorphic to the monoid
RO*(G), under direct sum, of isomorphism classes of orthogonal G-represen-
tations. In Theorem 2.4.13 we will identify the monoid nOG(BOP) with the or-
thogonal representation ring RO(G). The latter is the algebraic group comple-
tion of the former, and this group completion is realized by a morphism of
ultra-commutative monoids

i : Gr — BOP. (2.4.3)
The morphism i is given at V by the map
Gr(v) = || 6ra") — [ ], Gra(V)=BOP(V), L+ VelL.
The morphism is homogeneous in that it takes Gr'™ to BOP™.

As we will now show, the morphism i : Gr — BOP induces an algebraic
group completion of abelian monoids upon taking equivariant homotopy sets
from any equivariant space. This fact is the algebraic shadow of a more re-
fined relationship: as we will show in Theorem 2.5.33 below, the morphism
i : Gr — BOP is a group completion in the world of ultra-commutative
monoids, i.e., ‘homotopy initial’, in the category of ultra-commutative monoids,
among morphisms from Gr to group-like ultra-commutative monoids.

We recall from Definition 1.5.1 the equivariant homotopy set

[A,R]® = colimyeyas, [A,R(V)]C,

where R is an orthogonal space, G is a compact Lie group and A a G-space.
If R is an ultra-commutative monoid, then this set inherits an abelian monoid
structure defined as follows. Weleta : A — R(V) and 8 : A — R(W) be two
G-maps that represent classes in [A, R]°. Then their sum is defined as

le] +[B] = [uvw(@.p)], (2.4.4)
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where uyw : R(V) X R(W) — R(V @ W) is the (V, W)-component of the mul-
tiplication of R. The monoid structure is contravariantly functorial for G-maps
in A, and covariantly functorial for morphisms of ultra-commutative monoids
in R. When A = x is a one-point G-space, then [A, R]° becomes 7 (R), and the
addition (2.4.4) reduces to the addition as previously defined in (2.2.1).

Proposition 2.4.5. For every compact Lie group G and every G-space A, the
homomorphism

[A4,i1° : [A,Gr]° — [A,BOPI®
is a group completion of abelian monoids.

Proof We start by showing that the abelian monoid [A, BOP]C is a group. We
consider a G-representation V. For a linear subspace L C V> we consider the
1-parameter family of linear isometric embeddings

Hp : [0,11xLY — Ve V?, (tx)— (t-x, VI-£-x).

For every ¢ € [0, 1], the image of H;(t,—) is isomorphic to L* and orthogonal
to the space L ® 0 @ 0. We can thus define a G-equivariant homotopy

K : [0,11xGr(V?) — Gr(V’®V? by KL = (L&0&0)+ Hy(1,L").
Then

KO,L) = (L&0®0)+ H, (0,L*) = (Le0)+(0eL') = LeL*
and

K(1,L)

(Le0®0)+ H.(1,LY)
(Le0o0)+(L*e000) = VoVe0al.

We recall that the multiplication of BOP is given by
HeF : BOP(V)XBOP(V) — BOP(VeV), pOF(L,L) = kyy(LoL),

where «yy(v,v',w,w') = (v,w,V,w’). Therefore the equivariant homotopy
Gr(kyy) o K interpolates between the composite

(Id,(—)L BOP

Hyy
BOP(V) &, BOP(V) x BOP(V) — BOP(V& V)
and the constant map with value
kyy(VeoVele0) = VelaVel.

The subspace V& 0@ V @ 0 lies in the same path component of BOP(V?)¢ =
(Gr(V?>@V?))C as the subspace V& V@®0a0. So altogether this shows that the
composite ,uggp o (Id, (-)*) is G-equivariantly homotopic to the constant map

with value Ve Ve 0@ 0.
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Let @ : A — BOP(V) be a G-map, representing a class in [A, BOP]°.
The composite of a and the orthogonal complement map (-)* : BOP(V) —
BOP(V) represents another class in [A, BOP]®, and

[a]l +[() " oal = [WhYF o (d, (=) o a] = [cveverso o @] = 0

in the monoid structure of [A, BOP], because the subspace V& V& 0 ® 0 is
the neutral element in BOP(V & V). So the class [a] has an additive inverse,
and this concludes the proof that the abelian monoid [A, BOP]C is a group.

To show that the homomorphism [A, i]° is a group completion we show two
separate statements that amount to the surjectivity, and injectivity, respectively,
of the extension of [A, i]° to a homomorphism on the Grothendieck group of
the monoid [A, Gr]°.

(a) We show that every class in [A, BOP]C is the difference of two classes
in the image of i, = [A,i]° : [A,Gr]° — [A,BOP]C. To see this, we repre-
sent a given class x € [A,BOP]® by a G-map & : A — BOP(V), for some
G-representation V. Because BOP(V) = Gr(V @ V), the same map « also rep-
resents a class in [A, Gr]%; to emphasize the different role, we write this map
asaf 1 A — Gr(Ve V). We let cy : A — Gr(V) denote the constant map
with value V and y : V* —s V* the linear isometry defined by

X(1,v2,v3,v4) = (V2,V3,V1,V4) .
We observe that the following diagram commutes:

BOP(V) (Viecr 10 BOP(V) x BOP(V)

BOP

Gr(VeV) ——>BOP(VeV) ———~BOP(VoV)

Since y is equivariantly homotopic, through linear isometries, to the identity,

this shows that the composite u}" o(i(V)ocy, 1d) is G-equivariantly homotopic

to i(V @ V). Thus

v o (i(V)ocy,a)]

BOP & (i(V) o cy,Id) o @] = [i(V @ V)oab] = i[a?].

i.fey] +x

Thus x = i*[a'”] — i[cy], which shows the claim.

(b) Now we consider two classes a,b € [A, Gr]® such that i.(a) = i.(b)
in [A, BOP]°. We show that there exist another class ¢ € [4, Gr]° such that
¢+ a = c+ b. We can represent a and b by two G-maps a : A — Gr(V) and
B : A — Gr(V) such that the two composites

iVyoa, i(V)op : A — BOP(V)
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are equivariantly homotopic. As before we let cy : A — Gr(V) be the con-
stant map with value V. The map i(V) : Gr(V) — BOP(V) = Gr(Vea V)
factors as the composite
(cv.1d) My
Gr(V) — Gr(V)xGr(V) — Gr(VeV),
o)

[ev] +a = [ev]l+[e] = [uff} o (cv.@)]

[tyy o (cy,1d) o @] = [i(V)oa].
Similarly, [cy]+b = [i(V)of]. So [cy]+a = [cy]+bin [A, Gr]9, asclaimed. O

Our next aim is to show that the ultra-commutative monoid Gr represents
equivariant vector bundles, and BOP represents equivariant K-theory, at least
for compact G-spaces.

Construction 2.4.6. We let G be a compact Lie group and A a G-space. We
recall that a G-vector bundle over A consists of a vector bundle ¢ : E — A
and a continuous G-action on the total space E such that

o the bundle projection ¢ : E — A is a G-map,
e forevery g€ Ganda € Athemap g- —: E, — Eg, is R-linear.

We let Vectg(A) be the commutative monoid, under Whitney sum, of isomor-
phism classes of G-vector bundles over A. We define a homomorphism of
monoids

(=) 1 [A,Gr]° = colimyeyq, [A, Gr(V)]® — Vectg(A) (2.4.7)

that will turn out to be an isomorphism for compact A and that specializes to the
isomorphism (2.3.13) from ﬂg(Gl‘) to RO*(G) when A is a one-point G-space.
We let f : A — Gr(V) be a continuous G-map, for some G-representation
V. We pull back the tautological G-vector bundle yy over Gr(V) and obtain a
G-vector bundle f*(yy) : E — A over A with total space

E = {(v,a)e VXA|ve fla).

The G-action and bundle structure are as a G-subbundle of the trivial bundle
V X A. Since the base Gr(V) of the tautological bundle is a disjoint union of
compact spaces, the isomorphism class of the bundle f*(yy) depends only on
the G-homotopy class of f, see for example [151, Prop. 1.3]. So the construc-
tion yields a well-defined map

[A, Gr(V)]° — Vectg(A), [f] — [f*()].

If ¢ : V. — W is a linear isometric embedding of G-representations, then the



162 Ultra-commutative monoids

restriction along Gr(y) : Gr(V) — Gr(W) of the tautological G-vector bun-
dle over Gr(W) is isomorphic to the tautological G-vector bundle over Gr(V).
So the two G-vector bundles f*(yy) and (Gr(p) o f)*(yw) over A are isomor-
phic. We can thus pass to the colimit over the poset s(U;) and get a well-
defined map (2.4.7). The map (2.4.7) is a monoid homomorphism because all
additions in sight arise from direct sum of inner product spaces.

Now we ‘group complete’ the picture. We denote by KOg(A) the G-equi-
variant K-group of A, i.e., the group completion (Grothendieck group) of the
abelian monoid Vects(A). The composite

[A,Grl° -5 Vecto(A) — KOG(A)

of (2.4.7) and the group completion map is a monoid homomorphism into an
abelian group. The morphism [A,i]° : [A,Gr]® — [A,BOP] is a group
completion of abelian monoids by Proposition 2.4.5, where i : Gr — BOP
was defined in (2.4.3). So there is a unique homomorphism of abelian groups

(=) : [A,BOP]® = colimyeyqy, [A, BOP(V)] — KOg(4) (2.4.8)
such that the following square commutes:

()

[A, Gr]¢ Vectg(A)
[A,i]Gl j (2.4.9)
[A,BOP]® KOg(A)

We can make the homomorphism (2.4.8) more explicit as follows. We let f :
A — BOP(V) be a G-map for some G-representation V. We pull back the
tautological G-vector bundle over BOP(V) = Gr(V?) and obtain a G-vector
bundle f*(yy2) : E — A over A with total space

E = {(v,a)e V' xA|ve fla).

Again the G-action and bundle structure are as a G-subbundle of the trivial
bundle V? x A. The homomorphism (2.4.8) then sends the G-homotopy class
of f to the class of the virtual G-vector bundle

[f*(yv2)] = [V X A] € KOg(A).

In contrast to the definition of the earlier map (2.4.7), we now subtract the class
of the trivial G-vector bundle V X A over A. The class in KOg(A) only depends
on the class of f in [A, BOP]°, and this recipe defines the map (2.4.8).
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Theorem 2.4.10. For every compact Lie group G and every compact G-space
A the homomorphisms

(=) : [A,Gr]° — Vectg(A) and (=) : [A,BOP]® — KOg;(A)

defined in (2.4.7) and (2.4.8), respectively, are isomorphisms. As G varies,
the isomorphisms are compatible with restriction along continuous homomor-
phisms.

Proof The Grassmannian Gr is the disjoint union of the homogeneous pieces
Gr'"l, and the latter is isomorphic to the semifree orthogonal space Loy g, via

LR",V)/O(n) — Gr"(V), ¢-0m) — ¢®R").

Since the tautological action of O(n) on R" is faithful, Lo, r» is a global clas-
sifying space for O(n); Example 1.5.4 thus provides a bijection

[A,Gl'[n]]G —> Prin(Gyo(n))(A)

to the set of isomorphism classes of G-equivariant principal O(n)-bundles over
A, by pulling back the (G, O(n))-principal bundle L(R", V) — Gr'™(V), the
frame bundle of the tautological vector bundle over Gr"/(V). On the other
hand, we can consider the map

Pril’l(G’O(n))(A) —> Vectgl] (A)

to the set of isomorphism classes of G-vector bundles of rank n over A, send-
ing a (G,O(n))-bundle y : E — A to the associated G-vector bundle with
total space E Xy R". Since A is compact, every G-vector bundle admits a G-
invariant euclidean inner product, so it arises from a (G, O(n))-bundle; hence
the latter map is bijective as well. Altogether this shows that map

[A,Gr'"™¢ — Vect?(4) (2.4.11)

given by pulling back the tautological vector bundles is bijective.

A general G-vector bundle need not have constant rank, so it remains to
assemble the results for varying n. We let &€ be any G-vector bundle over A, not
necessarily of constant rank. Then the subset

Aw = la€ Al dim&,) = n)

of points over which ¢ is n-dimensional is open by local triviality of vector
bundles. So A is the disjoint union of the sets A, for n > 0, and each sub-
set A is also closed and hence compact in the subspace topology. Moreover,
Ay is G-invariant, so the restriction &, of the bundle to A, is classified by a
G-map fi) 1 Apy — Gr'"(v,) for some finite-dimensional G-representation
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V,. Since A is compact, almost all A, are empty, so by increasing the repre-
sentations, if necessary, we can assume that the classifying maps have target in
Gr!"(V) for a fixed finite-dimensional G-representation V, independent of n.
Then

Woso fiy @ Waso Ay = A — 50 Gr"(V) = Gr(V)

is a classifying G-map for the original bundle &. This shows that the map (2.4.7)
is surjective.

The argument for injectivity is similar. Any pair of classes in [A, Gr]® can
be represented by G-maps f, f : A — Gr(V) for some finite-dimensional G-
representation V. Since Gr(V) is the disjoint union of the subspaces Gr[”](V)
for n > 0, their inverse images under f and f provide disjoint union decompo-
sitions of A by fiber dimension. If the bundles f*(yy) and f*(yy) are isomor-
phic, the decompositions of A induced by f and f must be the same. The rank n
summands fi), fi) : A — Gr'"(V) become equivariantly homotopic after
increasing the representation V, because the map (2.4.11) is injective. More-
over, almost all summands are empty, once again by compactness. So there is a
single finite-dimensional representation W and a G-equivariant linear isometric
embedding ¢ : V — W such that f, f : A — Gr(V) become equivariantly
homotopic after composition with Gr(y) : Gr(V) — Gr(W). Hence f and
f represent the same class in [A, Gr]®, so the map (2.4.7) is injective. This
completes the proof that the map is an isomorphism for compact A.

The left vertical map in the commutative square (2.4.9) is a group comple-
tion by Proposition 2.4.5, and the right vertical map is a group completion by
definition. So the lower horizontal map (2.4.8) is also an isomorphism. O

We take the time to specialize Theorem 2.4.10 to the one-point G-space.
This special case identifies the global power monoid 7,,(BOP) with the global
power monoid RO of orthogonal representation rings. For every compact Lie
group G the abelian monoid RO(G) is the Grothendieck group, under direct
sum, of finite-dimensional G-representations. The restriction maps are induced
by restriction of representations, and the power operation [m] : RO(G) —
RO(Z,, 1 G) takes the class of a G-representation V to the class of the (Z,, ¢ G)-
representation V™. The resulting transfer trf, : RO(H) — RO(G) of Con-
struction 2.2.29, for H of finite index in G, is then the transfer (or induc-
tion), sending the class of an H-representation V to the class of the induced
G-representation map’ (G, V). A G-vector bundle over a one-point space ‘is’ a
G-representation and the map

RO(G) — KOg(#)

that considers a (virtual) representation as a (virtual) vector bundle is an iso-
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morphism of groups and compatible with restriction along continuous homo-
morphisms of compact Lie groups.

For easier reference we spell out the isomorphism (2.4.8) in the special
case A = * more explicitly. We let V be a finite-dimensional orthogonal G-
representation. The G-fixed-points of BOP(V) are the G-invariant subspaces
of V2, i.e., the G-subrepresentations W of V2. Representations of compact
Lie groups are discrete (compare the example after [151, Prop. 1.3]), so two
fixed-points in the same path component of BOP(V)¢ are isomorphic as G-
representations. Hence we obtain a well-defined map

7o(BOP(V)’) — RO(G)

by sending W € BOP(V)“ to [W] — [V], the formal difference in RO(G) of
the classes of W and V. These maps are compatible as V runs through the
finite-dimensional G-subrepresentations of U, so they assemble into a map

7§ (BOP) = colimyeyqs,) 7o(BOP(V)?) — RO(G) . (2.4.12)

Theorem 2.4.13. For every compact Lie group G the map (2.4.12) is an iso-
morphism of groups. As G varies, these isomorphisms form an isomorphism of
global power monoids

7,(BOP) = RO .

Proof The special case A = * of Theorem 2.4.10 shows that the map (2.4.12)
is an isomorphism and compatible with restriction along continuous homomor-
phisms. We have to argue that in addition, the maps (2.4.12) are also compat-
ible with transfers (or equivalently, with power operations). The compatibil-
ity with transfers can either be deduced directly from the definitions; equiva-
lently it can be formally deduced from the compatibility of the isomorphisms
7,(Gr) = RO" with transfers by the universal property of a group comple-
tion. O

The bijection (2.4.12) sends elements of nOG(BOPU‘]) to virtual representa-
tions of dimension &, so we can also identify the global power monoid of the
homogeneous degree 0 part BO = BOP!”. Indeed, the map (2.4.12) restricts
to an isomorphism of abelian groups

7§ (BO) = 10(G)

to the augmentation ideal IO(G) ¢ RO(G) of the orthogonal representation
ring, compatible with restriction maps, power operations and transfer maps.

Example 2.4.14 (Bar construction model B°O). Using the functorial bar con-
struction we define another global refinement B°O of the classifying space of
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the infinite orthogonal group. This ultra-commutative monoid is globally con-
nected, and it comes with a weak homomorphism to BO that ‘picks out’ the
path components of the neutral element in the G-fixed-point spaces BO()C.

We define B°O by applying the bar construction (see Construction 2.3.21)
objectwise to the monoid-valued orthogonal space O of Example 2.3.6. So the
value at an inner product space V is

B°0)(V) = B(O(V)),

the bar construction of the orthogonal group of V. The structure map of a linear
isometric embedding ¢ : V — W is obtained by applying the bar construction
to the continuous homomorphism O(g) : O(V) — O(W). We make B°O an
ultra-commutative monoid by endowing it with multiplication maps

pvw = (BTO)(V) x (B°O)(W) — (B°O)(V e W)

defined as the composite

B(O(V)) x B(O(W)) = B(O(V) x O(W)) e, B(O(Ve W),

where the first map is inverse to the homeomorphism (2.3.22).

Now we let G be a compact Lie group and V an orthogonal G-representation.
Taking fixed-points commutes with geometric realization (see Proposition B.1
(iv)) and with products, so

(B°O)V)E = |O(V)*[¢ = [(0(V)?)| = B(O%(V)).
Taking colimit over the poset s(U;) gives

(B°O)(UG)® = colimyeyas,y BOC(V) = BO%(Us) = [ | BO).
(4]
Here the last weak product is indexed by isomorphism classes of irreducible
G-representations, and each of the groups O%(U,) is either an infinite orthog-
onal, unitary or symplectic group, depending on the type of the irreducible
representation, compare Example 2.3.6. In particular, the space (B°O)(Us))°¢
is connected, so the equivariant homotopy set ﬂOG(B"O) has one element for
every compact Lie group G; the global power monoid structure is then neces-
sarily trivial. In particular, B°O is not globally equivalent to BO.

However, the difference seen by 7, is the only difference between B°O and
BO, as we shall now explain. We construct a weak morphism of ultra-commu-
tative monoids that exhibits B°O as the ‘globally connected component’ of
BO. We define an ultra-commutative monoid B’O by combining the construc-
tions of B°O (bar construction) and BO (Grassmannians) into one definition.
The value of B’O at an inner product space V is

(B'O)V) = |BJL(V, V), 0(V), %),
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the two-sided bar construction (homotopy orbit construction) of the right O(V)-
action on the space L(V, V?) by pre-composition. Here B,(L(V, V?), O(V), ) is
the simplicial space whose space of n-simplices is L(V, V) x O(V)". For n > 1
and 0 < i < n, the face map d; is given by

((,DOAI,AQ,...,An) fOI'i=O,
di(p,A,...A) =1 (@, A1,...,Ail1,Aj 0 A, A, .., A,) for0<i<n,
(@, A1,..., A1) fori = n.

Forn > 1and 0 <i < n - 1 the degeneracy map s; is given by
S?(QD’AI’-'-’Aan) = (¢’Als~-~aAi,Id’Ai+l’~--sAn71)'

Then (B’O)(V) is the realization of the simplicial space B.(L(V, V2), O(V), #).

To define the structure map associated with a linear isometric embedding
¢ 1 V. — W we recall that the structure map O(¢) : O(V) — O(W) of
the orthogonal space O is given by conjugation by ¢ and direct sum with the
identity on W — (V). We define a continuous map

¢ LAV — LW, W)
by
()W) +w) = *WO) + (w,0)) ;

here v € Vand w € W — ¢(V) is orthogonal to ¢(V). The map ¢y is compatible
with the actions of the orthogonal groups, i.e., the following square commutes:

O(p)
LV, V2) x O(V) —Z2 LW, W2) x O(W)

L(V.V?) Z LW, w?)

This equivariance property of ¢4 ensures that it passes to the two-sided bar
construction, i.e., we can define the structure map (B'O)(¢) : B'O)(V) —
(B’O)(W) as the geometric realization of the morphism of simplicial spaces

Bu(¢3, O(9), %) : Bo(L(V,V?),0(V), ) —> BJ(L(W, W?),0(W), %) .
A commutative multiplication
pvw = B'O)(V)x B'O)YW) — (B'O)V & W)

is obtained by combining the multiplications of B°O and BO. The construction
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comes with two collections of continuous maps:

B O)(V) < BV, V3),0(V).%) = BO)V)
BV) )
— L(V,V)/O(V) = BO(V)
The left map (V) is defined by applying the bar construction to the unique
map from L(V, V?) to the one-point space. The right map S(V) is the canonical
map from homotopy orbits to strict orbits. As V varies, the & and § maps form
morphisms of ultra-commutative monoids

B0 <~ B0 2 BO,

essentially by construction. As we shall now see, the morphism « is a global
equivalence; so we can view the chain as a weak morphism of ultra-commuta-
tive monoids from B°O to BO. The ultra-commutative monoid B°O is globally
connected, whereas BO is not, so the morphism g cannot be a global equiva-
lence. However, the second part of the next proposition shows that it is as close
to a global equivalence as it can be.

Proposition 2.4.15. (i) The morphism a : B'O — B°O0 is a global equiv-
alence of ultra-commutative monoids.
(ii) For every compact Lie group G, the morphism 3 : B'O — BO induces a
weak equivalence from the G-fixed-point space (B'O(Ug))C to the path
component of the unit element in the G-fixed-point space (BO(Ug))C.

Proof (i) We let V be a representation of a compact Lie group G and compare
the two-sided bar constructions for the O(V)-equivariant map from L(V, V?) to
the one-point space

V) : |BJL(V, V), 0(V),0(V)l — |Bu(,0(V), 0(V))| = EO(V) .

The group G acts by conjugation on L(V, V?) and on O(V). The group O(V)
acts freely from the right on the last factor in the bar construction, and this right
O(V)-action then commutes with the G-action. The map a(V) is (G x O(V))-
equivariant. The map a(V) : B’O(V) — BO(V) is obtained from &(V) by pas-
sage to O(V)-orbits. So Proposition B.17 allows us to analyze and compare the
G-fixed-points of @(V). Indeed, the proposition shows that the G-fixed-points
of B'O(V) = |B.(L(V,V?),0(V),0(V))|/O(V) are a disjoint union, indexed
by conjugacy classes of continuous homomorphisms y : G — O(V) of the
spaces

IB(L(V, V), 0(V), O(V)I" [C(y)



2.4 Global forms of BO 169

where I'(y) is the graph of . Since fixed-points commute with geometric real-
ization (see Proposition B.1 (iv)) and with products, we have

IB(L(V, V3), 0(V), O(V)['? = |B,LE(V, V?),0%(V),LE(y*(V), V)| .

If y*(V) and V are not isomorphic as G-representations, then L (y*(V), V) and
hence also the bar construction is empty. So there is in fact only one summand
in the disjoint union decomposition of (B’O(V))¢, namely the one indexed
by the representation homomorphism G — O(V) that specifies the given G-
action on V. We conclude that the inclusions of G-fixed-points

LSV, V) — L(V,V}» and  0%YV) — O®)
induce a homeomorphism
IB.LE(V, V2, 0%(V), %)l — [BJL(V, V), 0(V), %[ = B'OWV)°.

The same argument identifies the G-fixed-points of the bar construction B(O(V)) =
B°O(V), and we arrive at a commutative square

|1B.(LE(V, V2), 0%(V), )] ——= B(0°(V))

B'O(V)° o (B°O(V))“

in which both vertical maps are homeomorphisms. The space L¢(V, V?) be-
comes arbitrarily highly connected as V exhausts the complete G-universe
Ug. So the upper horizontal quotient map also becomes arbitrarily highly con-
nected as V grows. Hence the map (V)¢ becomes an equivalence

tel; (V)G : tel; B'O(V)® — tel; (B°O(V)))°

on the mapping telescopes over an exhaustive sequence {V;};>; of G-represen-
tations. fixed-points commute with mapping telescopes, so we conclude that
the map

teli O’(Vl’) . [61,' B’O(V,) — tel,- BOO(V,')

is a G-weak equivalence. The mapping telescope criterion of Proposition 1.1.7
thus shows that the morphism e : B'O — B°O is a global equivalence.

(ii)) We let V be a G-representation, specified by a continuous homomor-
phism p : G — O(V). We show that the map

BV + B'OWV)® = BV, V?,0(V), )| — BOV)®

is a weak equivalence of the source onto the path component of BO(V)¢ that
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contains the neutral element of the addition. The claim then follows by passing
to colimits over V in s(Ug).

We showed in part (i) that the inclusions of G-fixed-points L¢(V, V) —
L(V, V?) and 0°(V) — O(V) induce a homeomorphism

IB.(LE(V, V), 09 (V), %)] —> |BJ(L(V, V), 0(V),#)[° = B'OV))® .

Since the pre-composition action of O%(V) on L¢(V, V?) is free, and LE(V, V?)
is cofibrant as an OY(V)-space, the homotopy orbits map by a weak equiva-
lence to the strict orbits,

B'O(V)C = [BILV,V),0(V),»)® — LEWV,V*)/0°(V).
The map B(V)© factors as the composite
BOV)® = LOWV.V?)/0%(V) — (LV.v)/0m) = BOWY,

where the second map is induced by the inclusion L°(V, V?) — L(V, V?). The
space BO(V)C is the Grassmannian of G-invariant subspaces of V2 of the same
dimension as V, and the space LY(V, V?)/0%(V) consists of those subspaces
that are G-isomorphic to V. This is precisely the path component of BO(V)°
containing the neutral element. O

We have now identified the G-equivariant path components of the three
ultra-commutative monoids B°O, BO and BOP, and they are isomorphic to
the trivial group, the augmentation ideal IO(G) and the real representation ring
RO(G), respectively. Now we determine the entire homotopy types of the G-
fixed-point spaces of the three ultra-commutative monoids B°O, BO and BOP.

Corollary 2.4.16. Let G be a compact Lie group.

(i) The G-fixed-point space of B°O is a classifying space of the group O%(Ug)
of G-equivariant orthogonal isometries of the complete G-universe:

(B°O(U)° = BO°(Us))

(ii) The G-fixed-point space of BO is a disjoint union, indexed by the aug-
mentation ideal 10(G), of classifying spaces of the group O°(Ug):

BO(UG))° = 10(G) x B(O°(Ug))

(iii) The G-fixed-point space of BOP is a disjoint union, indexed by RO(G),
of classifying spaces of the group O°(Ug):

(BOP(U))® = RO(G) x B(O°(Ug))
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Proof (i) This is almost a tautology. Since G-fixed-points commute with ge-
ometric realization (see Proposition B.1 (iv)) and with products, they com-
mute with the bar construction. So the space (B°O(V))® is homeomorphic
to B(O%(V)) for every finite-dimensional G-representation V. Since G-fixed-
points also commute with the filtered colimit at hand (see Proposition B.1 (ii)),
we have

B°O(U)? = (colimyeyqy,) B°O(V))®
colimye,qy,) (B°O(V))©
= colimyegy) B (OG(V))
B(colimyeyay,) 0°(V)) = B(0°(Ug)) -

R

1

1

(ii) As we explained in Remark 2.1.2, the commutative multiplication of BO
makes the G-space BO(U;) an E..-G-space; so the fixed-points BO(U)°
come with the structure of a non-equivariant E,-space. The abelian monoid of
path components mo(BO(U)®) is isomorphic to ng(BO) = IO(G), hence an
abelian group. So all path components of the space BO(T;)® are homotopy
equivalent. Proposition 2.4.15 identifies the zero path component of BO(U(;)°
with B°O(U)C, so part (i) finishes the proof.

The proof of part (iii) is the same as for part (ii), the only difference being
that EO(BOP((I/Ig)G) is isomorphic to the abelian group RO(G). ]

The fixed-point spaces described in Corollary 2.4.16 can be decomposed
even further. As we explained in Example 2.3.6, the group O%(U) is a weak
product of infinite orthogonal, unitary and symplectic groups, indexed by the
isomorphism classes of irreducible G-representations A. The classifying space
construction commutes with weak products, which gives a weak equivalence

BO°(Ug)) = [ [ BOUy).

Moreover, the group O%(U,) is isomorphic to an infinite orthogonal, unitary
or symplectic group, depending on the type of the irreducible representation A.

Example 2.4.17 (More bar construction models). Since the bar construction
is functorial and continuous for continuous homomorphisms between topolog-
ical monoids, we can apply it objectwise to every monoid-valued orthogonal
space M in the sense of Definition 2.3.2; the result is an orthogonal space B° M.
The bar construction is symmetric monoidal, so if M is symmetric (and hence
an ultra-commutative monoid), then B°M inherits an ultra-commutative mul-
tiplication. By the same argument as for B°O, the orthogonal space B°M is
globally connected.

So the ultra-commutative monoid B°O has variations with O replaced by
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SO, U, SU, Sp, Pin, Spin, Pin“ and Spin°. We can also apply the bar con-
struction to morphisms of monoid-valued orthogonal spaces, i.e., morphism of
orthogonal spaces that are objectwise monoid homomorphisms. So hitting all
the previous examples with the bar construction yields a commutative diagram
of globally connected orthogonal spaces:

Bincl

B°SU B°U
| > By
B/ B/l Sa
Y B Y N
B°Spin ——— B°Spin* — B°SO
B°incll Bincl l LB"inCl
B°Pin — B°Pin¢ - B°O

As before, the two dotted arrows mean that the actual morphism goes to a
multiplicative shift of the target. With the exception of B°Pin and B°Pin°, all
these orthogonal spaces inherit ultra-commutative multiplications.

Example 2.4.18. We define an orthogonal space bO; its values come with
tautological vector bundles whose Thom spaces form the global Thom spec-
trum mQO, compare Example 6.1.24 below. For finite and abelian compact
Lie groups G, the equivariant homotopy groups of mQ are isomorphic to the
bordism groups of smooth closed G-manifolds, compare Theorem 6.2.33; so
bO and mO are also geometrically relevant. In Remark 2.4.25 we define an
E-multiplication on bO and show, using power operations, that this E-
multiplication cannot be refined to an ultra-commutative multiplication.
For an inner product space V of dimension n we set

bO(V) = Gr,(Va&R™),

the Grassmannian of n-dimensional subspaces in V & R™. The structure map
bO(¢) : bO(V) — bO(W) is given by

bO(@)(L) = (@@ R™)L) + (W -¢(V) ©0),

the internal orthogonal sum of the image of L under ¢ @ R* : V& R* —
W & R*™ and the orthogonal complement of the image of ¢ : V — W, viewed
as sitting in the first summand of W @ R™.

We want to describe the equivariant homotopy sets ﬂg(bO) and the homo-
topy types of the fixed-point spaces bO(U)C, for every compact Lie group G.
We denote by RO*(G) the abelian submonoid of RO*(G) consisting of the iso-
morphism classes of G-representations with trivial G-fixed-points. We let V be
a G-representation. The G-fixed-points of bO(V) are the G-subrepresentations
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L of V & R™ of the same dimension as V. Since G acts trivially on R*, the
‘non-trivial summand’ L* = L — LY is contained in V+ = V — V¢ So V* — L*
is a G-representation with trivial fixed-points. We can thus define a map

bOWV)® = (Gry(VeR®)? — RO¥G)

from this fixed-point space by sending L € bO(V)¢ to [V+—L*]. As before, the
isomorphism type of L only depends on the path component of L in bO(V)C.
Moreover, for every linear isometric embedding ¢ : V. — W the relation

(bO(p)(L))*

(g ®R)L) + (W — (V) & 0)*"
(L) + (W= (V1)) @0 = (W - (V' - L)) @0

shows that
(W = (bO(@)(L)'] = [e(Vt —LH] = [V* - L*].

So the class in RO“(G) depends only on the class of L in nOG(bO), and the
assignments assemble into a well-defined map

7r0G(bO) = colimyegas,) 7o (bO(V)G) — RO*G) . (2.4.19)
For the description of the G-fixed-points of bO we introduce the abbreviation
G
Gt = (Gryup))

for the space of j-dimensional G-invariant subspaces of U; = Ug — (Up)°.
The space Gr?’l can be decomposed further: before taking G-fixed-points,
Gri(UE) is G-equivariantly homeomorphic to L(R/, U%)/O()). So Proposi-
tion B.17 provides a decomposition of Grf’L as the disjoint union, indexed
over conjugacy classes of continuous homomorphisms @ : G — O(j), of the
spaces

LE (" (R), US)/C(a),

where C() is the centralizer, in O(j), of the image of a. Conjugacy classes of
homomorphisms from G to O(j) biject — by restriction of the tautological O(j)-
representation — with isomorphism classes of j-dimensional G-representations.
If V = a*(R/) is such a G-representation, then the space LY(V, UY) is empty
if V has non-trivial G-fixed-points, and contractible otherwise. Moreover, the
centralizer C(«) is precisely the group of G-equivariant linear self-isometries
of V, which acts freely on LY(V, UE). So if V¢ = 0, then the orbit space
LE(V, UL)/C(a) is a classifying space for the group LE(V, V) = 0%(V). So
altogether,

Gro+ = ]_[ BOS(V)). (2.4.20)
[VIERO¥(G), [VI=j
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Every G-representation V is the direct sum of its isotypical components V), in-
dexed by the isomorphism classes of irreducible orthogonal G-representations.
If V¢ = 0, then only the non-trivial irreducibles occur, and the group O%(V)
decomposes accordingly as a product

G ~ G
0°wy = | ], 0.

indexed by non-trivial irreducible G-representations. The irreducibles come in
three flavors (real, complex or quaternionic), and so the group O%(V),) is iso-
morphic to one of the groups O(m), U(m), and Sp(m), where m is the multiplic-
ity of A1in V. So altogether, Gr?’l is a disjoint union of products of classifying
spaces of orthogonal, unitary and symplectic groups.

Proposition 2.4.21. Let G be a compact Lie group.

(i) The G-fixed-point space bBO(U)C is weakly equivalent to the space

G,L
]_[jZO Gri* x BO .

(ii) The map (2.4.19) is a bijection from ﬂg(bO) 1o RO¥(G).
(iii) If U is a G-representation with trivial fixed-points, then the path com-

ponent of BO(UG)C indexed by U is a classifying space for the group
0%U) x 0.

Proof (i) We let V be a G-representation with V6 = 0 and W a trivial G-
representation. Then every G-invariant subspace L of V @ W @ R™ is the in-
ternal direct sum of the fixed part LY (which is contained in W & R*) and its
orthogonal complement L* = L — LY (which is contained in the summand V).
This canonical decomposition provides a homeomorphism

bO(VeW)C = (Gryuw(VOWeR™))® = ]_[ (Gni(V))GxGer(W@R“’)

sending L to the pair (V — L*, LY). Every G-invariant subspace of U is the
direct sum of its fixed-points and their orthogonal complement, so the poset
s(Ug) is the product of the two posets s(2/5) and s((Us)®). We can thus cal-
culate the colimit over s(Ug) in two steps. For fixed W, passing to the colimit
over s(UZ) gives a homeomorphism

colimyeyz) DOV @ W)E = ]_[]20 Gri* X Griqw(W @ R™) .

The factor Grj w(W @& R™) is a classifying space for the group O(j + |W]).
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Passing to the colimit over s((Us)”) then provides a weak equivalence

bO((L(G)G COlimWES((ruG)G) COlimVEs(rué) bO(V D W)G

=~ coliMyey(ey)0) (szo Gré* x BO(j + |W|))

]_[j>0 Gr{* x BO .

(i) Since the orthogonal space bO is closed, we can calculate ng(bO) as the
set of path components of the space bO(U)“, by Corollary 1.5.7 (i). Since the
space BO is path connected, part (i) allows us to identify mo(bO(Us)¢) with
the disjoint union, over j > 0, of the path components of Grf’L. As we ex-

[l

plained in the weak equivalence (2.4.20), the set no(Grf’L) bijects with the set
of isomorphism classes of j-dimensional G-representations with trivial fixed-
points. Altogether this identifies mo(bO(Us)¢) with RO*(G), and unraveling
all definitions shows that the combined bijection between 7rOG (bO) and ROﬁ(G)
is the map (2.4.19).

(iii) This is a direct consequence of part (i) and the description (2.4.20) of
the path components of the space Gr?’L. O

If H is a closed subgroup of a compact Lie group G and V a G-represen-

tation with V¢ = 0, then V may have non-zero H-fixed-points. So the re-
striction homomorphism resg : RO*(G) — RO (H) does not in general take
RO*(G) to RO*(H). So the monoids RO*(G) do not form a sub Rep-functor
of RO, and Proposition 2.4.21 does not describe m,(bO) as a Rep functor. We
will give a description of z,,(bO) as sub-Rep monoid of the augmentation ideal
global power monoid IO in Proposition 2.4.29 below.

As we shall now explain, the global homotopy type of the orthogonal space
bO is that of a sequential homotopy colimit, in the category of orthogonal
spaces, of global classifying spaces of the orthogonal groups O(m):

bO = hocolim,,; BgO(m)

The homotopy colimit is taken over morphisms B, O(m) — BgO(m + 1) that
classify the homomorphisms O(m) — O(m+1) givenby A — A®R. To make
this relation rigorous, we define a filtration

* = bO(()) C bO(]) c ... C bO(m) cC ... (2.4.22)
of bO by orthogonal subspaces. At an inner product space V we define
bO,(V) = Griy(VeR™); (2.4.23)

here we consider R™ as the subspace of vectors of the form (xy, ..., x,,0,0,...)
in R*. The inclusion of bO,, into bOy,,+1 is a closed embedding, so the global
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invariance property of Proposition 1.1.9 (viii) entitles us to view the union bO
as a global homotopy colimit of the filtration.

The tautological action of O(m) on R™ is faithful, so the semifree orthogonal
space By O(m) = Logn g is a global classifying space for O(m). We define a
morphism ¥, : BgO(m) — bOy,, by

ym(V) © LR™,V)/O(m) —  Gry(VeR") = bOuy(V),
¢ -0m) +— (V-p®R")SR".
We omit the straightforward verification that these maps indeed form a mor-
phism of orthogonal spaces. The semifree orthogonal space BgO(m) comes

with a tautological class ugr», defined in (1.5.11), which freely generates
the Rep-functor 7, (Bg O(m)). We denote by

Um = (YIn)*(u0(11z),R’") € ﬂg(m) (bO(m))

the image in bO,, of the tautological class. The following proposition justifies
the claim that bO is a homotopy colimit of the orthogonal spaces By O(m).

Proposition 2.4.24. For every m > 0 the morphism
Ym : Bglo(m) — bO(m)

is a global equivalence of orthogonal spaces. The inclusion bO,;y — bOgp11)
takes the class u,, to the class

Om+1 0
resOEZ;r M(ts1) € ﬂo(m) (bOn+1y) -

Proof The morphism v,, factors as the composite of two morphisms of or-
thogonal spaces

Loy zmoi m (=)*
Logmgn ——— shE" Logn,zr) —— b0 .
For the first morphism we leti : V — V@®R™ denote the embedding of the first
summand; furthermore, shgm is the additive shift by R™ as defined in Example
1.1.11. The first morphism is a global equivalence by Theorem 1.1.10. At an
inner product space V, the second morphism is the map

(shY" Lognen)(V) = LER™,V@R")/0(m) — Gry(VeR™),
@ 0m) —  eR™M*,

the orthogonal complement of the image. This is a homeomorphism, so the
second morphism is an isomorphism. Altogether this shows that vy,, is a global
equivalence.

The second claim is also reasonably straightforward from the definitions,
but it needs one homotopy. We let j : R” —s R”*! denote the linear isometric
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embedding defined by j(xi,...,x,) = (x1,...,Xy,0). The tautological class
uom)re 18 defined as the path component of the point

Idg -O(m) € (LR™,R™)/0(m)*™
the O(m)-orbit of the identity of R”. So the classes

. Ol . Ol
IHCI* (um) and reSOE::ll)(uln+l) mn 7T0 o) (bO(m+l))

are represented by the two subspaces
®R™! — jR™)® j(R™) and 0@®R™!

of R™! @ R™*!, These two representatives are not the same. However, the
O(m + 1)-action on bO(mH)(R’"”), and hence also the restricted O(m)-action,
is through the first copy of R"*! (and not diagonally!). So there is a path of
O(m)-invariant subspaces of R”*! @ R™*! connecting the two representatives.
The two points thus represent the same class in 71(? ) (bOgu+1)), and this proves
the second claim. O

Remark 2.4.25 (Commutative versus E-orthogonal monoid spaces). Non-
equivariantly, every E.-multiplication on an orthogonal monoid space can be
rigidified to a strictly commutative multiplication. We will now see that this is
not the case globally, with power operations being an obstruction.

To illustrate the difference between a strictly commutative multiplication
and an E.-multiplication, we take a closer look at the orthogonal space bO. If
we try to define a multiplication on bO in a similar way as for BO, we run into
the problem that R® @ R™ is different from R*; even worse, although R* @R>
and R™ are isometrically isomorphic, there is no preferred isomorphism. The
standard way out is to use all isomorphisms at once, i.e., to parametrize the
multiplications by the E.-operad of linear isometric self-embeddings of R™.
We recall that the nth space of the linear isometries operad is

L) = L(R®)",R7),

with operad structure by direct sum and composition of linear isometric em-
beddings (see for example [112, Def. 1.2] for details). For all n > 0 and all
inner product spaces Vi, ..., V, we define a linear isometry

k:VieR®)e - (V,eR™) =2 Vi@---0V,®dR™)
by shuffling the summands, i.e.,
KOV XL oo Vi Xn) = (Ve s Vi X1s e e e Xy)
We can then define a continuous map

tn ¢ L) xbO(Vy) x---xbO(V,) — DOV, & ---8V,)
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by
:un(QO’Ll’-H’Ln) = ((Vlea"'@vn)@‘p)oK)(Ll®"'@Ln)'

For fixed ¢ these maps form a multi-morphism, so the universal property of
the box product produces a morphism of orthogonal spaces

n(p,—) : bOR---®bO — bO.
For varying ¢, these maps define a morphism of orthogonal spaces
y » L) x(OR---xbO) — bO.

As n varies, all these morphism together make the orthogonal space bO an
algebra (with respect to the box product) over the linear isometries operad L.
Since the linear isometries operad is an E.-operad, we call bO, endowed with
this L-action, an E,-orthogonal monoid space.

Now we explain why the E,-structure on bO cannot be refined to an ultra-
commutative multiplication. An E-structure gives rise to abelian monoid struc-
tures on the equivariant homotopy sets. In more detail, we let R be any E-
orthogonal monoid space, such as for example bO. We obtain binary pairings

G

2SR x7$(R) = nS(R=R) Tilete ), 7SRy,
where ¢ € L(2) is any linear isometric embedding of (R*)? into R®. The
second map (and hence the composite) is independent of ¢ because the space
L(2) is contractible. In the same way as for strict multiplications in (2.2.1), this
binary operation makes ng (R) an abelian monoid for every compact Lie group
G, such that all restriction maps are homomorphisms. In other words, the E-
structure provides a lift of the Rep-functor m,(R) to an abelian Rep-monoid,
i.e., a functor

n,(R) : Rep” — AbMon .

This structure is natural for homomorphisms of E,-orthogonal monoid spaces.

An ultra-commutative monoid can be viewed as an E-orthogonal monoid
space by letting every element of L(n) act as the iterated multiplication. Equiv-
alently: we let the linear isometries operad act along the unique homomor-
phism to the terminal operad (whose algebras, with respect to the box product,
are the ultra-commutative monoids). For E-orthogonal monoid spaces aris-
ing in this way from ultra-commutative monoids, the products on m, defined
here coincide with those originally defined in (2.2.1). For ultra-commutative
monoids R, the abelian Rep-monoid 7, (R) is underlying a global power monoid,
i.e., it comes with power operations and transfer maps that satisfy various re-
lations. We show in Proposition 2.4.29 below that the abelian Rep-monoid
7,(bO) cannot be extended to a global power monoid whatsoever; hence bO



2.4 Global forms of BO 179

is not globally equivalent, as an E.-orthogonal monoid space, to any ultra-
commutative monoid. A curious fact, however, is that after global group com-
pletion the E.-multiplication of bO can be refined to an ultra-commutative
multiplication, compare Remark 2.5.36.

We compare the E-orthogonal monoid space bO to the ultra-commutative
monoid BO in the most highly structured way possible. Every ultra-commuta-
tive monoid can be viewed as an E,-orthogonal monoid space, and we now de-
fine a ‘weak E-morphism’ from bO to BO. The zigzag of morphisms passes
through the orthogonal space BO’ with values

BO'(V) = Gry(VZ@&R™). (2.4.26)
The structure maps of BO’ are a mixture of those for bO and BO, i.e.,
BO'(p)(L) = (¢ @R™)L) & (W—-¢(V)®0a0),

where now the orthogonal complement of the image of ¢ is viewed as sitting
in the first summand of W& W @R*. The linear isometries operad acts on BO’
in much the same way as for bO, making it an E-orthogonal monoid space.
Post-Composition with the direct summand embeddings

v,x)—(1,0,x)

o ) o WV0)=y) s
VeR® ——— V*eR® «————V

induces maps of Grassmannians

bov) <2 Bo(v) 2 BOV)

that form morphisms of E,-orthogonal monoid spaces
bO -5 BO' <~ BO. (2.4.27)

Proposition 2.4.28. The morphism b : BO — BOQ' is a global equivalence
of orthogonal spaces.

Proof We define an exhaustive filtration
BO = BO|, c BO;;, c ... ¢ BO|,, € ...
of BO’ by orthogonal subspaces by setting
BO, (V) = Gry(V>@R").

We denote by sh = sh{ the additive shift functor defined in Example 1.1.11,
and by ix : X — sh X the morphism of orthogonal spaces given by applying X
to the direct summand embeddings V — V @ R. The morphism iy is a global
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equivalence for every orthogonal space X, by Theorem 1.1.10. We define a
morphism

j : BOY — sh(BOy,,))

(m+1)

at an inner product space V by

JV) = BO,,. (V) = Gny(VeVeR"™
—> GrMH(V@R@ V@R@Rm) = Sh(BOEm))(V)

by applying the linear isometric embedding

VeVeR™! — VoRoVeOR®R"

(V, V/’ (xl LI xm+l)) — (V7 07 V/, xm+l > (X] LR xm))
and adding the first copy of R (the orthogonal complement of this last embed-
ding). Then the left triangle in the following diagram commutes:

incl
BOEm) BOEm+1)

i
, BOG41)
) J
I ’
BO(m)

sh(BO,,) TS sh(BO,,, )

The right triangle does not commute; however, it commutes up to a homotopy
of morphisms of orthogonal spaces. Indeed, the two morphisms from BOEm o1

to sh(BO), ) are induced by two different linear isometric embeddings from
R™! to R @ R™! that are applied to the last coordinates; the space of such
linear isometric embeddings is path connected, and the desired homotopy is
induced by any choice of path.

The two diagonal morphisms in the above diagram are global equivalences,
hence so is the inclusion BO{,,, — BOj,,,,, by the 2-out-of-6 property for
global equivalences (Proposition 1.1.9 (iii)). The inclusion of BO,, into BOY,,, |,

is also objectwise a closed embedding, so the inclusion
BO = B0, — | J  BOj, = BO'
is a global equivalence, by Proposition 1.1.9 (ix). O

We recall that IO(G) denotes the augmentation ideal in the real represen-
tation ring RO(G) of a compact Lie group G. In the same way as for BO we
define a monoid homomorphism

y : 1§(BO’) — 10(G)

by sending the path component of W € BO’(V)C to the class [W] — [V]. Then
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the triangle of monoid homomorphisms on the right of following diagram com-
mutes:

79(b0) —> 76(BO’) ~=— 73(BO)

10(G)

The two maps on the right are isomorphisms, hence so is the map 7.

The following proposition says that ﬂOG(bO) is isomorphic to the free abelian
submonoid of I0(G) generated by dim(4) - 1 — [1] as A runs over all isomor-
phism classes of non-trivial irreducible G-representations. We emphasize that
for non-trivial groups G, the monoid ﬂg (bO) does not have inverses, so bO is
not group-like.

Proposition 2.4.29. The composite morphism of abelian Rep-monoids
7,(b0) == 7,(BO") - IO

is a monomorphism. For every compact Lie group G the image of 7rOG (bO) in the
augmentation ideal 10(G) consists of the submonoid of elements of the form
dim(U) - 1 = [U], for G-representations U. The abelian Rep-monoid n,(bO)
cannot be extended to a global power monoid.

Proof If L ¢ V@R® is a G-invariant subspace of the same dimension as V,
then

(dim(L) — dim(LY)) - 1+ [L*] = (dim(V) = dim(VY)) - 1 = [V4]
dim(V* = LY - 1 - [V* = L]

[L]-[V]

in the group I0(G). This shows that the following square commutes:

7§ (b0) ———— 75(BO")

(2.4.19)l l)’

RO¥(G) g 10(G)
The left vertical map is bijective by Proposition 2.4.21 (ii). The right vertical
map is an isomorphism as explained above. This shows the first two claims
because the lower horizontal map is injective and has the desired image.
Now we argue, by contradiction, that the abelian Rep-monoid 7,,(bO) can-
not be extended to a global power monoid. The additional structure would in
particular specify a transfer map

o} 1 7 (b0) — 13 (bO) (2.4.30)
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from the alternating group Aj to the symmetric group X3. Since the monoid
75 (bO) has only one element, the double coset formula shows that

res>

(12)

otrff3 = trE,lz)oresg13 =0 : nS‘S(bO) — ﬂglz)(bO).

The group X3 has two non-trivial irreducible orthogonal representations, the
1-dimensional sign representation o and the 2-dimensional reduced natural
representation v. So 7%3 (bO) “is’ (via y o a,) the free abelian submonoid of
I0(Z3) generated by

l1-0 and 2-v.

We abuse notation and also write o~ for the 1-dimensional sign representation
of the cyclic subgroup of 3 generated by the transposition (1 2). Then

23

I‘CS(IZ)

(1-0) =1-0 and res;,(2-v) = 2—-(1+0) = 1 -0

so the only element of 7%3 (bO) that restricts to 0 in nélz)(bO) is the zero ele-
ment. Hence the transfer map (2.4.30) must be the zero map. However, another
instance of the double coset formula is

resy otry! = Id +(cap)” = 2-1d : 75°(bO) — 75’ (bO) .

The second equality uses that conjugation by the transposition (12) is the non-
trivial automorphism of A3, which acts trivially on RO(A3). Since 7r33(b0) is
a non-trivial free abelian monoid, this contradicts the relation trii = 0. So the
abelian Rep-monoid 7, (bO) cannot be endowed with transfer maps that satisfy
the double coset formulas. O

Example 2.4.31 (Periodic bO). The E,-orthogonal monoid space bO also has
a straightforward ‘periodic’ variant bOP that we briefly discuss. For an inner
product space V we set

bOP(V) = [ |  Gr(ver,

the disjoint union of all the Grassmannians in V @ R*™. The structure maps of
bOP are defined in exactly the same way as for bO. The orthogonal space bOP
is naturally Z-graded: for m € Z we let

bOP"™ (V) c bOP(V)

be the path component consisting of all subspaces L ¢ V @& R* such that
dim(L) = dim(V) + m. For fixed m these spaces form an orthogonal subspace
bOP"™ of bOP. The E,,-multiplication of bO extends naturally to a Z-graded
E..-multiplication on bOP, taking bOP" ® bOP" to bOP!*"). Moreover,
bO = bOP'", the homogeneous summand of bOP of degree 0.
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We offer two descriptions of the global homotopy type of the orthogonal
space bOP in terms of other global homotopy types previously discussed. As
we show in Proposition 2.4.32 below, each of the homogeneous summands
bOP" is in fact globally equivalent to the degree 0 summand bO, and hence

bOP ~ Z xbO

globally as orthogonal spaces. When combined with Proposition 2.4.21, this
yields a description of the homotopy types of the fixed-point spaces bPOP(U;)°.
To compare the different summands of bOP we choose a linear isometric
embedding ¢ : R® @ R — R* and define an endomorphism ¢4 : bPOP —
bOP of the orthogonal space bOP at an inner product space V as the map

Ys(V) : bOP(V) — bOP(V), L +— (Voy)LeR).

The morphism 4 increases the dimension of subspaces by 1, so it takes the
summand bOP™*! to the summand bOP¥*!!. Any two linear isometric embed-
dings from R @R to R™ are homotopic through linear isometric embeddings,
so the homotopy class of ¢ is independent of the choice of .

Proposition 2.4.32. For every linear isometric embedding  : R*®R — R*
the morphism of orthogonal spaces Yy : bOP — bOP is a global equiva-
lence. Hence for every m € Z the restriction is a global equivalence

¥y : bOP"™ — pOP"+!1

Proof We let sh = shg denote the additive shift of an orthogonal space as
defined in Example 1.1.11, with i : Id — — @ R the natural transformation
given by the embedding of the first summand. The morphism v factors as the
composite
bOP 2% shbOP 5 HOP.
The second morphism is defined at V' as the map
(shbOP)(V) = bOP(V&R) — bOP(V)

that sends a subspace of V @ R @ R™ to its image under the linear isometric
embedding

VoeR&R” — VaR”, ,xy) — (y(,x).

The morphism bOP o i : bOP — shbOP is a global equivalence by The-
orem 1.1.10. Any two linear isometric embeddings from R & R to R* are
homotopic through linear isometric embeddings; in particular, the linear iso-
metric embedding ¢ is homotopic to a linear isometric isomorphism. Thus ¥, is
homotopic to an isomorphism, hence a global equivalence. Since both bOP o i
and ¢, are global equivalences, so is the composite . O
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Another description of the global homotopy type of bOP is as a global ho-
motopy colimit of a sequence of self-maps of Gr:

bOP =~ hocolim,,>; Gr.

The homotopy colimit is taken over iterated instances of a morphism Gr —
Gr that classifies the map ‘add a trivial summand R’. To make this relation
rigorous, we use the filtration

* = bOP(O) - bOP(]) c ... C bOP(m) C ...

of bOP by orthogonal subspaces, analogous to the filtration (2.4.22) for bO.
In other words,

bOP(m)(V) = Unzo Grn(V ) Rm) )

as before we consider R” as the subspace of R™ of all vectors of the form
(x1,...,%,,0,0,...).

We write sh™ for shi , the additive shift by R” in the sense of Example
1.1.11. We define a morphism vy, : sh” Gr — bOP,,,, by

Yu(V) @ (sh” Gr)(V) = Gr(VeR") — bOP,,(V)

the orthogonal complement of L inside V & R”. We omit the straightforward
verification that these maps indeed form a morphism of orthogonal spaces.
Since each map 7y,,(V) is a homeomorphism, the morphism y,, is in fact an
isomorphism of orthogonal spaces.

The morphism

im : Gr — sh” Gr

induced by the direct summand embedding V — V @ R™ is a global equiv-
alence by Theorem 1.1.10. The inclusion of bOP,, into bOP,,. ) is a closed
embedding, so the global invariance property of Proposition 1.1.9 (ix) entitles
us to view the union bOP as a global homotopy colimit of the filtration. This
justifies the interpretation of bOP as a global homotopy colimit of a sequence
of copies of Gr. For this description to be useful we should identify the global
homotopy classes of the morphisms in the sequence, i.e., the weak morphisms

YmOim incl Ym+1lm1

Gr — bOP(m) — bOP(WH_l) «—— Gr.

As is straightforward from the definition, this weak morphism models ‘adding
a summand R with trivial action’.

Finally, we compare the E.-orthogonal monoid space bOP to the ultra-
commutative monoid BOP. In analogy with the non-periodic version in (2.4.26),
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we introduce the orthogonal space BOP’ with values
BOP'(V) = | |  Gr(V?eR™).

The structure maps of BOP’ are defined in the same way as for BO’, and they
mix the structure maps for bBOP and BOP. Post-Composition with the direct
summand embeddings

v,x)—(1,0,x)

o > 0 ) ,0)—=(v,y) >
VOR® — V°oR® «—-—V

induces morphisms of E-orthogonal monoid spaces

bOP - BOP' <~ BOP.

These morphisms preserve the Z-grading; the restrictions to the homogeneous

degree 0 summand are precisely the morphisms with the same names intro-

duced in (2.4.27). The same argument as in Proposition 2.4.28 also shows that

the morphism b : BOP — BOP’ is a global equivalence of orthogonal spaces.
We define a monoid homomorphism

y : 7§(BOP’) — RO(G)

by sending the path component of W € BOP’(V)C to the class [W]—[V]. Then
the triangle of monoid homomorphisms on the right of the following diagram
commutes:

S

75 (bOP) —— 75 (BOP') <—— 7§ (BOP)

RO(G)

14

The two maps on the right are isomorphisms, hence so is the map . The
same argument as in Proposition 2.4.29 shows that the composite morphism
of abelian Rep-monoids y o a. : ,(bOP) — RO is a monomorphism, and for
every compact Lie group G the image of ﬂ'g(bOP) in the representation ring
RO(G) consists of the submonoid of elements of the form n-1—[U], forn € Z
and U any G-representation.

Example 2.4.33 (Complex and quaternionic periodic Grassmannians). The
ultra-commutative monoids BO and BOP and the E,-orthogonal monoid spa-
ces bO and bOP have straightforward complex and quaternionic analogs; we
quickly give the relevant definitions for the sake of completeness. We define
the periodic Grassmannians BUP and BSpP by

BUP(V) = | |  Gro(v3) and BSpP(V) = [ [ Gr(vh),

the disjoint union of the respective Grassmannians, with structure maps as for
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BOP. External direct sum of subspaces defines a Z-graded ultra-commutative
multiplication on BUP and on BSpP, again in much the same way as for BOP.
The homogeneous summands of degree zero are closed under the multiplica-
tion and form ultra-commutative monoids BU = BUP?! and BSp = BSpP!".
More explicitly,

BU(V) = Griy(V3)  and  BSp(V) = Gry,(V3).

The complex and quaternionic analogues of Theorem 2.4.13 provide isomor-
phisms of global power monoids

n,(BUP) = RU and n,(BSpP) = RSp;

here RU(G) and RSp(G) are the Grothendieck groups, under direct sum, of iso-
morphism classes of unitary and symplectic G-representations, respectively.
The isomorphisms above match the Z-grading of BUP and BSpP with the
grading by virtual dimension of representations, so they restrict to isomor-
phisms of global power monoids from 7,(BU) and 7,,(BSp) to the augmenta-
tion ideal global power monoids inside RU and RSp.

Theorem 2.4.10 also generalizes to natural group isomorphisms, compatible
with restrictions,

(=) : BUPG(A) — KUg(A) and (-) : BSpP;(A) — KSp;(4)

to the equivariant unitary and symplectic K-groups, where G is any compact
Lie group and A a compact G-space.

Example 2.4.18 can be modified to define E,-orthogonal monoid spaces bU
and bSp with values

bU(V) = Gry(Ve ®C™) and bSp(V) = Gry (Ve @ H).

The structure maps and E,-multiplication are defined as for bO. As orthogonal
spaces, bU and bSp are global homotopy colimits of the sequence of global
classifying spaces BgU(m) and B, Sp(m). Periodic versions, bUP and bSpP,
are defined by taking the full Grassmannian inside Ve @ C* and Vyx & H™,
respectively, as in the real case in Example 2.4.31. The periodic versions are,
viewed as orthogonal spaces, global homotopy colimits of iterated instances
of the self-maps of Gr® and Gr, respectively, that represent ‘adding a trivial
1-dimensional representation’.

2.5 Global group completion and units

For every orthogonal monoid space R and every compact Lie group G, the op-
eration (2.2.1) makes the equivariant homotopy set ng(R) a monoid, and this
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multiplication is natural with respect to restriction maps in G. If the multiplica-
tion of R is commutative, then so is the multiplication of ng(R). In this section
we look more closely at the group-like ultra-commutative monoids, i.e., the
ones where all these monoid structures have inverses. There are two universal
ways of making an ultra-commutative monoid group-like: the ‘global units’
(Construction 2.5.18) are universal from the left and the ‘global group comple-
tion’ (Construction 2.5.20 and Corollary 2.5.31) is universal from the right. In
the homotopy category of ultra-commutative monoids, these constructions are
right adjoint or left adjoint to the inclusion of group-like objects. On ng both
constructions have the expected effect: the global units pick out the invertible
elements of ng (see Proposition 2.5.19), and the effect of global group comple-
tion is group completion of the abelian monoids nOG (see Proposition 2.5.21).
Naturally occurring examples of global group completions are the morphism
i : Gr — BOP from the additive Grassmannian to the periodic global ver-
sion of BO, and its complex and quaternionic versions, see Theorem 2.5.33.
At the end of this section we use global group completion to prove a global,
highly structured version of Bott periodicity: Theorem 2.5.41 shows that BUP
is globally equivalent, as an ultra-commutative monoid, to QU.

The category of ultra-commutative monoids is pointed, and product and
box product are the categorical product and coproduct, respectively, in the
category of ultra-commutative monoids. These descend to product and co-
product in the homotopy category Ho(umon) of ultra-commutative monoids,
with respect to the global model structure of Theorem 2.1.15. The morphism
Prs 1 R®S — R xS is a global equivalence by Theorem 1.3.2 (i), so in
Ho(umon) the canonical morphism from a coproduct to a product is an iso-
morphism. Various features of units and group completions only depend on
these formal properties, and work just as well in any pointed model category
in which coproducts and products coincide up to weak equivalence. So we
develop large parts of the theory in this generality.

Construction 2.5.1. Let D be a category which has finite products and a zero
object. We write A X B for any product of the objects A and B and leave the
projections A X B — A and A X B — B implicit. Given morphisms f : T —»
Aand g: T — B we write (f,g) : T — A X B for the unique morphism that
projects to f and g. We write O for any morphism that factors through a zero
object.

We call the category D pre-additive if ‘finite products are coproducts’; more
precisely, we require that every product A X B of two objects A and B is also a
co-product, with respect to the morphisms

ii = (1ds,0) : A — AxB and i, = (0,Idg) : B — AXB.
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In other words, we demand that for every object X the map

is bijective. The main example we care about is D = Ho(umon), the homotopy
category of ultra-commutative monoids.

In this situation we can define a binary operation on the morphism set D(A, X)
for every pair of objects A and X. Given morphisms a,b : A — X we let
alb : AX A — X be the unique morphism such that (aLb)i; = a and
(aLb)i, = b. Then we define

a+b = (alb)A : A — X,
where A = (Ids,Id4) : A — A X A is the diagonal morphism.

The next proposition is well known, but I do not know a convenient refer-
ence.

Proposition 2.5.2. Let D be a pre-additive category. For every pair of objects
A and X of D the binary operation + makes the set D(A, X) of morphisms
an abelian monoid with the zero morphism as neutral element. Moreover; the
monoid structure is natural for all morphisms in both variables, or, equiva-
lently, composition is biadditive.

Proof The proof is lengthy, but completely formal. For the associativity of
‘+’ we consider three morphisms a,b,c : A — X. Then a + (b + ¢) and
(a + b) + c are the two outer composites around the diagram:

A
T
AXA AXA
Id XA AXId
| Q |

AXAXA)— > (AXA) XA

am mm
X

Here « is the associativity isomorphism. The upper part of the diagram com-
mutes because the diagonal morphism is coassociative. The lower triangle then
commutes since the two morphisms

al(blc), ((aLb)lc)oa :AX(AXA) — X

have the same ‘restrictions’, namely a, b and c.
The commutativity is a consequence of two elementary facts: first, bLa =
(aLb)tr where 7 : A XA — A X A is the automorphism that interchanges
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the two factors; this follows from 7i; = i, and 7i; = i;. Second, the diagonal
morphism is cocommutative, i.e., TA = A : A — A X A. Altogether we get

a+b = (aLb)A = (aLb)tA = (bLa)A = b+a.

As before we denote by 0 € D(A, X) the unique morphism that factors through
a zero object. We let p; : A X A — A be the projection to the first factor. Then

(aL0)iy
(aL0)i; = 0

ap1(1d,0) = ap;i; and

ap1(0,1d) = apiiy .

So we have a L0 = ap; in D(A X A, X). Hence a + 0 = (aL0)A = ap|A = a;
by commutativity we also have 0 + a = a.

Now we verify naturality of the addition. To check (a + b)c = ac + bc for
a,b:A— Xandc: A — A we consider the commutative diagram

A’ ¢ A 8 L AxA

A N

A XA —ZC s AxA—2 X
\_/

acLbc

in which the composite through the upper right corner is (a + b)c. We have
(aLb)(c X )iy = (aLb)(c,0) = ac = (acLlbc)i;

and similarly for i, instead of ;. So (aLb)(c X ¢) = acLbc since both sides
have the same ‘restrictions’ to the two factors of A’ X A’. Since the composite
through the lower left corner is ac + bc, we have shown (a + b)c = ac + bc.
Naturality in X is even easier. For a morphism d : X — Y we have d(alb) =
daldb : AXA — Y since both sides have the same ‘restrictions’ da and db to
the two factors of A X A. Thus d(a + b) = da + db by the definition of ‘+’. O

Now we introduce the group-like objects in a pre-additive category.

Proposition 2.5.3. Let D be a pre-additive category. For every object A of D
the following two conditions are equivalent:

(a) The shearing morphism ALi; = (Apy) + ibpr : AXA — AXAisan
isomorphism.
(b) The identity of A has an inverse in the abelian monoid D(A, A).

We call A group-like if it satisfies (a) and (b). If A is group-like, then more-
over for every object X of D the abelian monoids D(A, X) and D(X, A) have

inverses.
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Proof (a)==(b) Since the shearing map is an isomorphism, there is a mor-
phism (k, j) : A — A X A such that

(Id4,0) = (ALip)o(k,j) = (k,k+])).

So k =1d4 and Id4 +j = 0, i.e., j is an additive inverse of the identity of A.
(b)y=(a) If j € D(A, A) is an inverse of the identity of A, then the morphism

(p1,jLIdy) = (Ids, j)Lir : AXA — AXA

is a two-sided inverse to the shearing morphism, which is thus an isomorphism.
If j € D(A,A) is an additive inverse to the identity of A, then for all f €
DX, A)
f+Gf) = ddaof)+(jof) = Ida+j)of = 0of = 0;
so jo fisinverse to f. Similarly, for every g € D(A, X) the morphism g o j is

additively inverse to g. |

In the next definition and in what follows, we denote by M* the subgroup of
invertible elements in an abelian monoid M.

Definition 2.5.4. Let D be a pre-additive category. A morphism u : R — R
is a unit morphism if for every object T' the map

D(T,u) : D(T,R*) — D(T,R)

is injective with image the subgroup D(T, R)* of invertible elements. A mor-
phism i : R — R* in D is a group completion if for every object T the map

DGE,T) : DR*,T) — DR, T)
is injective with image the subgroup D(R, T)* of invertible elements.

Remark 2.5.5. If u : R — R is a unit morphism then the abelian monoid
D(R*, R*) is a group, by the defining property; so the object R* is in particular
group-like. Since the pair (R*, u) represents the functor

D — (sets), T — D(T,R)*,

it is unique up to preferred isomorphism. A formal consequence is that if we
choose a unit morphism ug : R* — R for every object R, then this extends
canonically to a functor

- :D—9D
and a natural transformation u : (=)* — Id. Since the functor (-)* takes

values in group-like objects, it is effectively a right adjoint to the inclusion of
the full subcategory of group-like objects.
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A category D is pre-additive if and only if its opposite category D is pre-
additive. Moreover, in that situation D(A, X) and D°P(X, A) are not only the
same set (by definition), but they also have the same monoid structure. Thus
the concepts of unit morphism and group completion are ‘dual’ (or ‘opposite’)
to each other: a morphism is a unit morphism in 9 if and only if it is a group
completion in PP, This is why many properties of unit maps have a corre-
sponding ‘dual’ property for group completions, and why most proofs for unit
maps have ‘dual’ proofs for group completions. Since the identity of any ob-
ject of D is also the identity of the same object in DP, part (b) of Proposition
2.5.3 shows that ‘group-like’ is a self-dual property: an object is group-like in
P if and only if it is group-like in DP.

So the above properties of unit morphisms dualize: if i : R — R* is a group
completion, then R* is in particular group-like. The pair (R*, i) is unique up to
preferred isomorphism, and if we choose a group completion ig : R — R* for
every object R, then this extends canonically to a functor

=D — 9D

and a natural transformation i : Id — (-)*, producing a left adjoint to the
inclusion of group-like objects.

Example 2.5.6 (Unit morphisms and group completion for abelian monoids).
The category of abelian monoids is the prototypical example of a pre-additive
category, and the general theory of units and group completions is an abstrac-
tion of this special case. So we take the time to convince ourselves that the
concepts of ‘unit morphism’ and ‘group completion’ have their familiar mean-
ings in the motivating example.

A basic observation is that in the category of abelian monoids, the abstract
addition of morphism as in Proposition 2.5.2 is simply pointwise addition of
homomorphisms. So an abelian monoid is group-like in the abstract sense of
Proposition 2.5.3 if and only if every element has an inverse; so the group-like
objects are precisely the abelian groups.

A given homomorphism f : M — N of abelian monoids is invertible if
and only if it is pointwise invertible in N, which is the case if any only if the
image of f lies in the subgroup N* of invertible elements. So the inclusion
u: N* — N of the subgroup of invertible elements is a unit morphism in the
sense of Definition 2.5.4.

We recall the Grothendieck group of an abelian monoid M. An equivalence
relation ~ on M? is defined by declaring (x, y) equivalent to (x’,’) if and only
if there is an element z € M with

x+y +z=x+y+z.
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The componentwise addition on M? is well-defined on equivalence classes, so
the set of equivalence classes

M* = M?*/ ~

inherits an abelian monoid structure. We write [x, y] for the equivalence class
in M™* of a pair (x, y). The pair (x + y, y + x) is equivalent to (0, 0), so

[x,y] +[y,x] = [x+y,y+x] =0

in the monoid M*. This shows that every element of M* has an inverse, and
M* is an abelian group. We claim that the monoid homomorphism

i M — MY, ix) = [x0]

is a group completion in the sense of Definition 2.5.4. Indeed, given a monoid
homomorphism & : M — N that is pointwise invertible, then we can define
f:M* — Nby

flx.yl = h(x) - h(y) .

A routine verification shows that f is indeed a well-defined homomorphism
and that sending & to f is inverse to the restriction map

AbMon(i,N) : AbMon(M*,N) — AbMon(M,N)* .

A slightly different way to summarize the construction of the Grothendieck
group is to say that the group completion of an abelian monoid M is a cokernel,
in the category of commutative monoids, of the diagonal morphism A : M —
M X M.

We observe that

[x.y] = [x,0]1+[0,y] = i(x)—i(y),

so every element in M* is the difference of two elements in the image of
i : M — M*. Moreover, if x, x’ € M satisfy i(x) = i(x’), then the pairs (x, 0)
and (x’,0) are equivalent, which happens if and only if there is an element
Z € M such that x+z = x" +z. Conversely, these properties of the Grothendieck
construction characterize group completions of abelian monoids: a homomor-
phism j : M — N of abelian monoids is a group completion if and only if the
following three conditions are satisfied:

e the monoid N is a group;

e every element in N is the difference of two elements in the image of j; and

o if x,x’ € M satisfy j(x) = j(x'), then there is an element z € M such that
x+z=x"+z
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Indeed, the first condition guarantees that j extends (necessarily uniquely) to a
homomorphism M* — N; the second and third conditions guarantee that the
extension is surjective and injective, respectively, and hence an isomorphism.

We mostly care about the situation where 9 = Ho(C) is the homotopy cate-
gory of a pointed model category C, such as the category of ultra-commutative
monoids. As we shall now proceed to prove, in this situation units and group
completions always exist.

We consider two composable morphisms f : A — Bandg : B — C
in a pointed category D. We recall that f is a kernel of g if gf = 0 and for
every morphism 8 : T — B such that g8 = 0, there is a unique morphism
a : T — A such that fa = 8. Dually, g is a cokernel of f if gf = 0 and for
every morphism 8 : B — Y such that 8f = 0, there is a unique morphism
y: C — Y such that yg = 5.

Proposition 2.5.7. Let R be an object of a pre-additive category D.

(i) Let e : R* — R X R be a kernel of the codiagonal morphism 1d L 1d :
R X R — R. Then the composite

u = (Id10)oe : R* — R
is a unit morphism and
e = (u,-u) : R — RxXR.

Conversely, if u : R — R is a unit morphism, then the morphism
(u,—u) : R* — R X R is a kernel of the codiagonal morphism Id L1d :
RXR—R.

(ii) Letd : R X R — R* be a cokernel of the diagonal morphism (1d,1d) :
R — R X R. Then the composite

i =do(d,0) : R — R*
is a group completion and
d =il(-i) : RXR — R*.

Conversely, if i : R — R* is a group completion, then the morphism
iL(=i) : RX R — R* is a cokernel of the diagonal morphism (Id,1d) :
R— RXR.

Proof We prove part (ii). Part (i) is dual, i.e., equivalent to part (ii) in the
opposite category D°P. We let T be any object of D. Then the map

(L, e DR, TV | f+g=0} — DRI, (f.g) — f

is bijective because inverses in abelian monoids, if they exist, are unique. A
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cokernel of the diagonal morphism is a morphism d : R X R — R* that
represents the left-hand side of this bijection; a group completion is a mor-
phism i : R — R* that represents the right-hand side of this bijection. Hence
d : RX R — R* is a cokernel of the diagonal if and only if d o (Id,0) is a
group completion.

The relation d o (Id, 0) = i holds by definition. The relation

(do(0,1d)+i = do((0,1d) +(Id,0)) = do(Id,Id) = 0

holds in the monoid D(R, R*), and thus d o (0,1d) = —i. This shows that d =
iL(=0). O

The previous characterization of unit morphisms as certain kernels and group
completions as certain cokernels implies the following corollary.

Corollary 2.58. Let F : D — & be a functor between pre-additive cate-
gories that preserves products.

(1) If F preserves kernels of splittable epimorphisms, then for every unit mor-
phism u : R* — R in D, the morphism Fu : F(R*) — FR is a unit
morphism.

(1) If F preserves cokernels of splittable monomorphisms, then for every
group completion i : R — R* in D, the morphism Fi : FR — F(R*) is
a group completion.

Now we consider a pointed model category C whose homotopy category is
pre-additive. The main example we have in mind is C = umon, the category of
ultra-commutative monoids with the global model structure of Theorem 2.1.15.
The homotopy category Ho(C) then comes with an adjoint functor pair (Z, Q)
of suspension and loop, compare [134, 1.2].

Proposition 2.5.9. Let C be a pointed model category whose homotopy cate-
gory is pre-additive.

(i) For every object R of C, the loop object QR and the suspension LR are
group-like in Ho(C).
(ii) If u : R* — R is a unit morphism, then its loop Qu : Q(R*) — QR is
an isomorphism in Ho(C).
(iii) Ifi : R — R* is a group completion, then its suspension i : LR —>
X(R*) is an isomorphism in Ho(C).

Proof (i) This is a version of the Eckmann-Hilton argument. For every ob-
ject T of C, the set [T, QR] has one abelian monoid structure via Construction
2.5.1, coming from the fact that Ho(C) is pre-additive. A second binary opera-
tion on the set [T, QR] arises from the fact that QR is a group object in Ho(C),
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compare [134, 1.2]. This operation makes [T, QR] a group. The monoid struc-
ture of Construction 2.5.1 is natural for morphisms in the second variable QR,
in particular for the group structure morphism QR x QR — QR. This means
that the two binary operations satisfy the interchange law. Since they also share
the same neutral element, they coincide. Since one of the two operations has
inverses, so does the other.

The argument that XR is group-like is dual, beause XR is the loop object of
R in Ho(C)°? = Ho(C®P), and ‘group-like’ is a self-dual property.

(ii) Since the functor Q : Ho(C) — Ho(C) is right adjoint to X, it preserves
products and kernels. So Qu : Q(R*) — QR is a unit morphism by Corol-
lary 2.5.8. Since QR is already group-like by part (i), Qu is an isomorphism.
Part (iii) is dual to part (ii); so it admits the dual proof, or can be obtained by
applying part (ii) to the opposite model category. O

Proposition 2.5.10. Consider a commutative square

|

C——D

P

_

in a pointed model category C such that the object C is weakly contractible.

(1) If the square is homotopy cartesian and g admits a section in Ho(C), then
the morphism f is a kernel of g in Ho(C).

(1) If the square is homotopy cocartesian and f admits a retraction in Ho(C),
then the morphism g is a cokernel of f in Ho(C).

Proof We prove part (i). Part (ii) can be proved by dualizing the argument or
by applying part (i) to the opposite category with the opposite model structure.
Since the square is homotopy cartesian and C is weakly contractible, the object
A is weakly equivalent to the homotopy fiber, in the abstract model category
sense, of the morphism g. As Quillen explains in Section 1.3 of [134], there is
an action map (up to homotopy)

AX(QD) — A,
by an abstract version of ‘fiber transport’. For every other object T of C, Propo-
sition 4 of [134, 1.3] provides a sequence of based sets

[7.94] [T.0] [T./] [T.g]
that is exact in the sense explained in [134, 1.3 Prop. 4], where [—, —] denotes
the morphism sets in the homotopy category of C. In particular, the image of
[T, f]is equal to the preimage of the zero morphism under the map (7, g].
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So in order to show that f is a kernel of g it remains to check that the map
[T, f] is injective. So we consider two morphisms a,a; € [T,A] such that
foa; = foap. Then by Proposition 4 (ii) of [134, 1.3], there is an element
A € [A,QD] such that @y = a; - A. Since the morphism g : B — D has
a section, so does the morphism Qg : QB — QD. So there is a morphism
A € [T,QB] such that 1 = (Qg) o A. But all elements in the image of [T, Qg]
act trivially on [T, A], so then

@ =a -1 =a-(Qgod) = a;. ]

Theorem 2.5.11. Let C be a pointed model category whose homotopy category
is pre-additive.

(1) Every object of C has a unit morphism and a group completion in Ho(C).
(ii) If C is right proper, then every object R admits a C-morphism u : R* —
R that becomes a unit morphism in the homotopy category Ho(C).
(iii) If C is left proper; then every object R admits a C-morphism i : R — R*
that becomes a group completion in the homotopy category Ho(C).

Proof (i) We let R be any object of C. It suffices to show, by Proposition 2.5.7,
that the codiagonal morphism Id L Id : R X R — R has a kernel in Ho(C) and
the diagonal morphism (Id,Id) : R — R X R has a cokernel in Ho(C). The
arguments are again dual to each other, so we only show the first one.

We can assume without loss of generality that R is cofibrant and fibrant.
Then the fold map V : RII R — R in the model category C becomes the
codiagonal morphism of R in Ho(C). We factor V = ¢ o j for some weak
equivalence j : RII R — Q followed by a fibration ¢ : Q —> R. Then we
choose a pullback, so that we arrive at the homotopy cartesian square:

P—f>-Q

|t

% —> R

The morphism g still becomes a codiagonal morphism in Ho(C), and so it has
a section. By Proposition 2.5.10 (i) the morphism f becomes a kernel of g in
Ho(C). So the codiagonal morphism of R has a kernel.

(ii) We choose a weak equivalence ¢ : R — R to a fibrant object. A unit
morphism RX — R exists in Ho(C) by part (i). By replacing the source R* by
a weakly equivalent object, if necessary, we can assume that it is cofibrant as an
object in the model category C. Every morphism in Ho(C) from a cofibrant to a
fibrant object is the image of some C-morphism under the localization functor,
i.e., there is a C-morphism # : RX — R that becomes a unit morphism in
Ho(C). By factoring i as a weak equivalence followed by a fibration we can
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moreover assume without loss of generality that # is a fibration. We form a
pullback

R —“< R

Rx__>R
u

Since g is a weak equivalence, # a fibration and C is right proper, the base
change p of g is also a weak equivalence. So u is isomorphic to i in the arrow
category in Ho(C), hence u is also a unit morphism of Ho(C). Part (iii) is dual
to part (ii). m]

Remark 2.5.12. We claim that unit morphisms and group completions also
behave nicely on derived mapping spaces. We explain this in detail for unit
morphisms, the other case being dual, one more time. Model categories have
derived mapping spaces (i.e., simplicial sets) map”(—, —), giving well-defined
homotopy types such that

mo(map”(T,R)) = Ho(C)(T,R), (2.5.13)

compare [80, Sec.5.4] or [78, Ch. 18]. We let u : R* — R be a C-morphism
that becomes a unit morphism in Ho(C), and T any other object of C. Because
of the bijection (2.5.13) the map

u, : map"(T,R*) — map"(T,R)

lands in the subspace map”*(T, R), defined as the union of those path compo-
nents that represent invertible elements in the monoid Ho(C)(T, R). We claim
that u, is a weak equivalence onto the subspace map™*(T, R). To see this we ex-
ploit the fact that both map”(T, RX) and map”*(T, R) are group-like H-spaces,
the multiplication arising from the fact 7 is a comonoid object up to homo-
topy. Moreover, the map u. is an H-map and bijection on path components (by
the universal property of unit morphisms and the bijection (2.5.13)). So it suf-
fices to show that the restriction of u to the identity path components is a weak
equivalence. For this it suffices in turn to show that the looped map

Q(u.) : Qmap"(T,R*)) — Q(map"*(T.R))
is a weak equivalence. But this map is weakly equivalent to
(Qu), : map"(T,QUR*)) — map"(T,QR) .

Since Qu is an isomorphism in Ho(C) (by Proposition 2.5.9 (ii)) it is a weak
equivalence in C, hence so is the induced map on derived mapping spaces.
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The next proposition will be used to show that loops on the bar construction
provide functorial global group completions of ultra-commutative monoids.

Proposition 2.5.14. Let C be a pointed model category whose homotopy cat-
egory is pre-additive. Suppose that for every group-like object R of C the ad-
Jjunction unit n : R — Q(XR) is an isomorphism in Ho(C). Then for every
object R of C the adjunction unitn : R — Q(ZR) is a group completion.

Proof Weleti: R — R* be a group completion, which exists by Theorem
2.5.11. In the commutative square in Ho(C)

R—™ -~ QER)

ll = l Qi)

R* % QE(R*))

the lower horizontal morphism is an isomorphism by hypothesis because R* is
group-like. The morphism Xi : ¥R — X(R*) is an isomorphism by Proposi-
tion 2.5.9 (iii), hence the right vertical morphism (i) is also an isomorphism.
So ng is isomorphic, as an object in the comma category R | Ho(C), to i, and
hence also a group completion. O

The previous proposition also has a dual statement (with the dual proof): if
for every group-like object R of C the adjunction counit € : Z(QR) — R is
an isomorphism in Ho(C), then € is a unit morphism. In practice, however, this
dual formulation is less useful: in the important examples that arise ‘in nature’,
for example for ultra-commutative monoids, the adjunction unit  : R —
Q(ZR) is an isomorphism for all group-like objects R, whereas the adjunction
counit € : Z(QR) — R is not always an isomorphism.

Now we specialize the theory of units and group completions to ultra-commu-
tative monoids. We recall that the category of ultra-commutative monoids has
the trivial monoid as zero object, and the canonical morphism pgrs : RRS —
R xS from the coproduct to the product of two ultra-commutative monoids is a
global equivalence by Theorem 1.3.2 (i). So the homotopy category Ho(umon)
is pre-additive.

Definition 2.5.15. An ultra-commutative monoid R is group-like if it is group-
like as an object of the pre-additive category Ho(umon). A morphism u :
R* — R of ultra-commutative monoids is a global unit morphism if it is a unit
morphism in the pre-additive category Ho(umon). A morphism i : R — R*
of ultra-commutative monoids is a global group completion if it is a group
completion in the pre-additive category Ho(umon).
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The global model structure on the category of ultra-commutative monoids is
proper, see Theorem 2.1.15. Theorem 2.5.11 thus guarantees that every ultra-
commutative monoid R admits a global unit morphism # : R* — R and a
global group completion i : R — R*.

As a reality check we show that for ultra-commutative monoids R, the ab-
stract definition of ‘group-like’ is equivalent to the requirement that all the
abelian monoids JTg (R) are groups. This part works more generally for all or-
thogonal monoid spaces, not necessarily commutative. A monoid M (not nec-
essarily abelian) is a group if and only if the shearing map

X M? — M2, (x,y) — (x,xy)

is bijective. Indeed, if M is a group, then the map (x, z) — (x, x~'7) is inverse to
x- Conversely, if y is bijective, then for every x € M there is ay € M such that
x(x,y) = (x,1), i.e., with xy = 1. Then y(x,yx) = (x, xyx) = (x,x) = y(x, 1),
so yx = 1 by injectivity of y. Thus y is a two-sided inverse for x.

For orthogonal monoid spaces R (not necessarily commutative), the group-
like condition has a similar characterization as follows. The shearing mor-
phism is the morphism of orthogonal spaces

x=@@,u) : RRR — RXR

whose first component is the projection p; to the first factor and whose second
component is the multiplication morphism ¢ : R®R R — R.

The multiplication morphism ¢ : R ® R — R, and hence the shearing
morphism y, is a homomorphism of orthogonal monoid spaces only if R
is commutative.

Proposition 2.5.16. Let R be an orthogonal monoid space. Then the following
two conditions are equivalent:

(1) The shearing morphism y : R®R R — R X R is a global equivalence of
orthogonal spaces.

(i1) For every compact Lie group G the monoid noc(R) is a group.

For commutative orthogonal monoid spaces, conditions (i) and (ii) are more-
over equivalent to being group-like in the pre-additive homotopy category of
ultra-commutative monoids.
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Proof (i)==(ii) The vertical maps in the commutative diagram

75 ()
G 0
n(R®R)

ﬂOG(R X R)
<ng<m),ng<pz>>l~ Nl(ﬂg(pl),ﬂg(pz)) (2.5.17)

ﬂg(R) X ﬂg(R) ﬂg(R) X 7T06(R)

(xy) = (x,xy)

are bijective by Corollary 1.5.20. If the shearing morphism is a global equiva-
lence, then the map ﬂg(/\/) is bijective, hence so is the algebraic shearing map
of the monoid ﬂg(R). This monoid is thus a group.

(i1))==(i) Now we assume that all the monoids ﬂg(R) are groups. We assume
first that R is flat as an orthogonal space; then R ® R is also flat, by Proposition
1.4.12 (i) for the global family of all compact Lie groups. The product R X R
is also flat, by Proposition 1.3.9. Since R ® R and R X R are flat, they are also
closed as orthogonal spaces by Proposition 1.2.11 (iii). We may thus show that
for every compact Lie group G the continuous map

X = X(Us)° : RRRY(UG)E — RXRN(UG)E = R(UG) x R(UG)°

is a weak equivalence, compare Proposition 1.1.17. Since the monoid ng(R)
has inverses, the shearing morphism y : R ® R — R X R induces a bijection
on noc, by the commutative diagram (2.5.17) with vertical bijections. On path
components we have

S(RER) = m(RrR)(Us)®) and a§(RXR) = mo((R x R)(U:)),

compare Corollary 1.5.7. So we conclude that the map y© induces a bijection
on path components.

Now we show that y“ also induces bijections on homotopy groups in pos-
itive dimensions. We consider a point x € (R ® R)(Us))® and k > 1. We
let ¢ : ‘Llé — U be any G-equivariant linear isometric embedding. As we
explained in Remark 2.1.2, this map induces an H-space structure on (R ®
R)(Ug)C, and hence a continuous map

@ (=0 1 RRR)(Us) — (RrR)(Us)® .

Since the unit element 1 is a homotopy unit for the H-space structure, the ele-
ment x" = ¢.(1, x) belongs to the same path component as x. Since the monoid
7o(R(U)®) is isomorphic to the group ﬂoc(R), the H-space structure has in-
verses. So the map ¢.(—, x)¢ is a homotopy equivalence. The same argument
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applies to R X R instead of R ® R, and we obtain a commutative diagram

(9,1
T((R® R)(UG), 1) (R X R)(Ug)%, 1)
ﬂk(w*(—,X)G)l: = | mp (= O ()°)
m(R & RY(UG), &) ————— m(RX RN(U) X (1))

in which both vertical maps are bijective. So to show that the map y“ induces
bijections of homotopy groups based at x, it suffices to show this for the special
case x = | of the unit element.

Now the map 7;(xY, 1) is a group homomorphism such that the composite

2 (x,y) XXy
B —

(e (R(U)C, 1)) m((R®R)(UG), 1)

(9. 1)

D (R x R Ug)C, 1)

(m(R(Ug)?, 1))
sends (x, ) to (x, u.(x X y)), where u : R® R — R is the multiplication map.
By the Eckmann-Hilton argument, u.(x X y) = xy, the product with respect
to the group structure of 7 (R(Ug)®, 1). The first and third maps are bijective,
and so is the composite (because m(R(U)C, 1) is a group). So the middle map
is bijective. Altogether this shows that the map y© is a weak equivalence.

For general R we choose a global equivalence f : R* — R of orthogonal
monoid spaces such that R’ is flat as an orthogonal space. One way to arrange
this is by cofibrant replacement in the global model structure of orthogonal
monoid spaces (Corollary 1.4.15 (ii) with R = % and ¥ = All). Then f ® f
is a global equivalence by Theorem 1.3.2 and f X f is a global equivalence
by Proposition 1.1.9 (vi). Since x* is a global equivalence by the previous
paragraph and y® o (f ® f) = (f X f) o x¥', the morphism x¥ is also a global
equivalence.

Finally, if R is ultra-commutative, then the point-set level shearing morphism
x becomes the shearing morphism in the sense of Proposition 2.5.3 (a) in the
pre-additive homotopy category Ho(umon). So y is a global equivalence if and
only if the shearing morphism in Ho(umon) is an isomorphism, i.e., precisely
when R is group-like. O

Now we look more closely at global unit morphisms, and we give an explicit,
functorial point-set level construction. For elements in an abelian monoid M,
left inverses are automatically right inverses, and they are unique (if they exist).
So the subgroup of invertible elements of an abelian monoid is isomorphic to
the kernel of the multiplication map, by

M* = ker(+: M> — M), x — (x,—x).
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Proposition 2.5.7 (i) gives an abstract formulation of this and explains how an
abstract kernel of the multiplication map gives rise to a unit morphism. The
proof of Theorem 2.5.11 then shows that the homotopy fiber of the multiplica-
tion map, formed at the model category level, constructs such a kernel. If we
make all this explicit for the model category of ultra-commutative monoids,
we arrive at the following construction.

Construction 2.5.18 (Units of an ultra-commutative monoid). We introduce a
functorial point-set level construction of the global units of an ultra-commutative
monoid R. We define R* as the homotopy fiber, over the additive unit ele-
ment 0, of the multiplication morphismu : R®RR — R, i.e.,

R* = F(u) = (R®R) x, R xg {0} .
So at an inner product space V, we have
R)(V) = (R&R)(V) Xuvy RV gy {0},

the space of pairs (x,w) consisting of a point x € (R ® R)(V) and a path
w : [0, 171 — R(V) such that u(V)(x) = w(0) and w(1) = 0, the unit element in
R(V). Since limits and cotensors with topological spaces of ultra-commutative
monoids are formed on underlying orthogonal spaces, this homotopy fiber in-
herits a preferred structure of ultra-commutative monoid.

We claim that the composite

u: R ReR 25 R

is a global unit morphism, where p is the projection onto the first factor. Indeed,
the commutative square

R*— " _R®mR

0,1
RO Xr {0} T R

is a pullback of ultra-commutative monoids, by definition, and both horizon-
tal morphisms are strong level fibrations, where ¢ denotes the projection to
the second factor. So the square is homotopy cartesian. The multiplication
morphism g has a section, so Proposition 2.5.10 (i) shows that the morphism
p : R — R ® R becomes a kernel of the multiplication morphism in the ho-
motopy category Ho(umon). So u is a unit morphism by Proposition 2.5.7 (i).

We recall from Example 2.2.17 that every global power monoid M has a
global power submonoid M* of units; the value M*(G) at a compact Lie group
G is the group of invertible elements of M(G). The next proposition verifies
that global unit morphisms have the expected behavior on 7,,.
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Proposition 2.5.19. Letu : R* —> R be a unit morphism of ultra-commutative
monoids. Then the morphism of global power monoids

Eo(u) : Eo(RX) — 7_ro(R)
is an isomorphism onto the global power submonoid (7_r0(R))>< of units of 7, (R).

Proof This is a formal consequence of the fact that the functor n'OG from the
homotopy category of ultra-commutative monoids is representable. We let G
be a compact Lie group and V a non-zero faithful G-representation. Then the
global classifying space ByG = Lg,y supports the tautological class ugy €
ﬂ'g(BglG), compare (1.5.11). We recall that

U™ = n.(ugy) € 15P(ByG))

where 17 : ByG — P(ByG) is the inclusion of the linear summand. We claim

that evaluation at »"" is an isomorphism of abelian monoids

HO(MmOI’l)(P(BglG), T) >~ ng(T), [f] — f*(uquon

for every ultra-commutative monoid 7'. Indeed, both sides take global equiva-
lence in T to isomorphisms, so we may assume that 7 is fibrant in the global
model structure of ultra-commutative monoids, hence positively static. Now
we consider the composite

7o(T(V)%) = mo(map"™ " (B(ByG), T)) —
l=fwe
Ho(umon)(P(ByG), T) ————— ny(T)

with the adjunction bijection and the map induced by the localization functor
v : umon —> Ho(umon). Since V is non-zero and faithful, ByG = Lgy is
positively flat, so P(BgG) is cofibrant in the global model structure of ultra-
commutative monoids. Since P(ByG) is cofibrant and T is fibrant, the middle
map is bijective. The composite is the canonical map mo(T(V)¢) — JTOG(T) to
the colimit, which is bijective because T is positively static.

The evaluation isomorphism is natural in the second variable, so we arrive
at a commutative square of abelian monoids

Ho(umon)(P(ByG), R*) —= ﬂOG(RX)
Ho(umon)(P(ByG), R) — ng(R)

in which both horizontal maps are bijective. The left vertical map is injective
with image the subgroup of invertible elements; hence the same is true for the
right vertical map. m}
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Now we turn to global group completions of ultra-commutative monoids.
Every ultra-commutative monoid has a group completion in the homotopy
category, by Theorem 2.5.11 (i). Even better: since the model category of
ultra-commutative monoids is left proper, every ultra-commutative monoid
is the source of a global group completion in the model category of ultra-
commutative monoids, by Theorem 2.5.11 (iii). Now we discuss two functorial
point-set level constructions of global group completions. The first one is dual
to Construction 2.5.18 of global units.

Construction 2.5.20 (Global group completion of an ultra-commutative mo-
noid). We let R be an ultra-commutative monoid that is cofibrant in the global
model structure of Theorem 2.1.15. We define the cone of R as a pushout in
the category of ultra-commutative monoids:

R® {0} ——— =

Reincl l j

R®[0,1] ——CR

Here ® is the tensor of an ultra-commutative monoid with a topological space,
as explained in Construction 2.1.6 (not to be confused with the objectwise
product of an orthogonal space with a space). So the cone is R>[0, 1], the tensor
of R with the based space ([0, 1], 0), as defined more generally in (2.1.9). Since
R is cofibrant and the global model structure is topological, the left vertical
morphism is an acyclic cofibration, and so the cone CR is globally equivalent
to the zero monoid.

We can then construct a global group completion as a homotopy cofiber of
the diagonal morphism A : R — R X R, i.e., a pushout in the category of
ultra-commutative monoids:

R—2 _RxR

L

R>[0,1] ——R*

The left vertical morphism is induced by 1 € [0, 1], and it is a cofibration since
R is cofibrant. We claim that the composite
1d,0
iR RxR L R
is a global group completion. Indeed, the square above is homotopy cocartesian

by construction and the diagonal morphism has a retraction. So Proposition
2.5.10 (ii) shows that the morphism d : R X R — R* becomes a cokernel of
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the diagonal morphism in the homotopy category Ho(umon). So i is a global
group completion by Proposition 2.5.7 (ii).

The previous construction of the global group completion can be rewritten
as a two-sided bar construction as follows. The unit interval [0,1] = Al is
also the topological 1-simplex, and hence canonically homeomorphic to the
geometric realization of the simplicial 1-simplex A[1], by

[0,1] — |A[1]l, ¢ +— [Idp.1].

So Proposition 2.1.10 shows that CR = R 1> [0, 1] is effectively a bar con-
struction of R with respect to the box product, i.e., the internal realization of
the simplicial object of ultra-commutative monoids B(R, A[1]), where A[1] is
pointed by the vertex 0. Since A[1] has (m + 1) non-basepoint simplices of
dimension m, expanding this yields

B.(R,A[1]) = R>A[l],, = R=™D

with simplicial structure induced by that of A[1].

Since the internal realization of simplicial ultra-commutative monoids is
a coend, it commutes with pushouts. So the defining pushout for R* can be
rewritten as the realization of a simplicial ultra-commutative monoid, the two-
sided bar construction with respect to the box product:

R* = R>[0,1D)®Rr (RXR) = B(R,A[1) Rz (RXR) = B*(*,R,RXR).
In simplicial dimension m, this bar construction is given by
B%(+,R,RXR) = R™® (RXR);

the simplicial face morphisms are given by projections away from the first fac-
tor (for dp), the multiplication of R on two adjacent factors (for dy,...,d;-1)
and the action of R on R X R through the diagonal. The simplicial degeneracy
morphisms are inserting the unit of R. In the context of topological monoids,
this bar construction of a group completion for ‘sufficiently homotopy com-
mutative’ monoids is sketched by Segal on p. 305 of [153].

The next proposition is a reality check, showing that global group comple-
tion has the expected effect on equivariant homotopy sets.

Proposition 2.5.21. Leti : R — R* be a global group completion of ultra-
commutative monoids. Then for every compact Lie group G the map

7§ A (R) — n§(R*)
is an algebraic group completion of abelian monoids and

7,0+ my(R) — 7y (R*)



206 Ultra-commutative monoids
is a group completion of global power monoids.

Proof We may assume that R is cofibrant in the global model structure of
ultra-commutative monoids of Theorem 2.1.15. As we explained in Construc-
tion 2.5.20, a group completion R* can then be constructed as the realization
of a certain simplicial ultra-commutative monoid, the two-sided bar construc-
tion B¥(x, R, R X R), where R acts on R x R through the diagonal morphism.
By Proposition 2.1.7, the realization can equivalently be taken internal to the
category of ultra-commutative monoids, or in the underlying category of or-
thogonal spaces. The ‘underlying’ realization is the sequential colimit of par-
tial realizations B, i.e., ‘skeleta’ in the simplicial direction, defined as the
coend

m

[m]eA<n
B = f B2(+,R,R X R) x A"

of the restriction to the full subcategory A, of A with objects all [m] with
m < n. Since A, is contained in A, |, there is a canonical morphism BM —;
B"*11 and the realization B®(x, R, R X R) is the colimit of the sequence of or-
thogonal spaces

RxR=pB" — gl _, ... _, gl _, ...
The 1-skeleton B! is the pushout of orthogonal spaces:

incl

RxR(RXR)x{0,1} ————=R®R(RXR)x|[0,1]

| l

RXR Bl

The orthogonal space R ® (R X R) x {0, 1} is the disjoint union of two copies of
R® (R X R), and the left vertical map is projection to R X R on one copy; on the
other copy the morphism has the two components

Ho(RRp)), uo(RRpy) :RR(RXR) — R,

where ¢ : R® R — R is the multiplication and pi, p» : R X R — R are the
two projections. The functor ﬂg takes both the box product and the product of
orthogonal spaces to products of sets, by Corollary 1.5.20. So for a compact
Lie group G, the set 7§ (B!!)) is the coequalizer of the two maps

7S(R) x 7§ (R) x 1S (R) ? 7S (R) x 76(R)

given by

a(x,y,2) = (¥,2) and b(x,y,2) = (x+y,x+2).
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The equivalence relation on the set 71'06(R) X ﬂg(R) generated by declaring
a(x,y, z) equivalent to b(x,y,z) for all (x,y,2) € ng(R) is precisely the equiv-
alence relation that constructs the Grothendieck group of ﬂOG(R), compare Ex-
ample 2.5.6. So 7§ (B!")) bijects with the algebraic group completion of 7§ (R).
For n > 1 the passage from B! to B"*! involves attaching simplices of di-
mension at least 2 along their boundary, and this process does not change the
path components of G-fixed-points of the values at any G-representation. So
the morphism B! — B®(x, R, R X R) induces a bijection on 7. This proves
that the morphism R — B®(x, R, RX R) = R* is a group completion of abelian
monoids.

The second claim then follows because group completions of global power
monoids are calculated ‘groupwise’, compare Example 2.2.18. O

For topological monoids, the loop space of the bar construction (see Con-
struction 2.3.21) provides a functorial group completion. We will now explain
that a similar construction also provides global group completion for ultra-
commutative monoids, before passing to the homotopy category. Part of this
works for arbitrary orthogonal monoid spaces, not necessarily commutative.
We refer to Construction 1.2.34 for generalities about the realization of simpli-
cial objects, in particular simplicial orthogonal spaces.

If R is an orthogonal monoid space, then the bar construction is the simpli-
cial object of orthogonal spaces

B.(R) = ([n] > R™).

The simplicial face morphisms are induced by the multiplication in R, and
the degeneracy morphisms are induced by the unit morphism of R, much like
for the bar construction with respect to cartesian product (as opposed to box
product) in Construction 2.3.21. The geometric realization in the category of
orthogonal spaces is then the orthogonal space

B(R) = |B.(R)|. (2.5.22)

Geometric realization of orthogonal spaces is ‘objectwise’, i.e., for an inner
product space V we have

B(R)(V) = [B.(R)Y(V)I,

the realization of the simplicial space [n] — R¥'(V).

The next proposition shows that the bar construction of orthogonal monoid
spaces preserves global equivalences under a mild non-degeneracy condition
on the unit.

Definition 2.5.23. An orthogonal monoid space R has a flat unit if the unit
morphism * — R is a flat cofibration of orthogonal spaces.
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The condition that the unit morphism * — R is a flat cofibration is equiv-
alent to the requirements that the underlying orthogonal space of R is flat and
the unit map = — R(0) is a cofibration of spaces.

We recall from Definition 1.2.36 that a simplicial orthogonal space X is
Reedy flat if the latching morphism 2 : L2(X) — X,, in the simplicial direc-
tion is a flat cofibration of orthogonal spaces for every n > 0.

Proposition 2.5.24. (i) For every orthogonal monoid space R with flat unit
the simplicial orthogonal space B.(R) is Reedy flat.
(i1) Let f : R — S be a morphism of orthogonal monoid spaces with flat
units. If f is a global equivalence, so is the morphism B(f) : B(R) —
B(S).

Proof (i) The nth latching morphism L2(B.(R)) — B,(R) in the simplicial
direction is the iterated pushout product

il:ll‘l : Qn(i) N RlZ}’l

with respect to the unit morphism * — R. Since this unit morphism is a flat
cofibration, the pushout product property of the flat cofibrations shows that i?",
and hence the latching morphism, is a flat cofibration for all n > 0.

(ii) Since R and S have flat units, the simplicial orthogonal spaces B,(R)
and B.(S) are Reedy flat by part (i). Moreover, the morphism B,(f) = f® :
R® — S§®" ig a global equivalence since f is and because the box product
is homotopical for global equivalences (by Theorem 1.3.2). So the claim fol-
lows from the global invariance of realizations between Reedy flat simplicial
orthogonal spaces (Proposition 1.2.37 (ii)). O

Remark 2.5.25 (Comparing bar constructions). We let M be a monoid-valued
orthogonal space in the sense of Definition 2.3.2. Then we have two bar con-
structions available: on the one hand we can take the bar construction object-
wise as in Example 2.4.17, resulting in the orthogonal space B°M. On the other
hand, we can first pass to the associated orthogonal monoid space as in (2.3.3),
and then perform the bar construction with respect to the ®-multiplication as
in (2.5.22). There is a natural comparison map: the symmetric monoidal trans-
formation pyy : X® Y — X X Y defined in (1.3.1) has an analog for any finite
number of factors, and for varying n, the morphisms

form a morphism of simplicial orthogonal spaces
pe @ BI(M) — BI(M)

from the ®-bar construction to the X-bar construction. If M has a flat unit, then
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the simplicial orthogonal spaces BE(M) and B} (M) are both Reedy flat. Indeed,
for the former, this is Proposition 2.5.24 (i), and for the latter the same proof
works because the categorical product of orthogonal spaces also satisfies the
pushout product property with respect to flat cofibrations (Proposition 1.3.9).
So p. is a morphism between Reedy flat simplicial orthogonal spaces that is
a global equivalence in every simplicial degree (by Theorem 1.3.2 (i)). The
induced morphism |p.| : B(M) — B°M between the realizations is then a
global equivalence by Proposition 1.2.37 (ii).

The canonical morphism
Rx[0.1] = Bi(R)x A" — |B.(R)| = B(R)

takes R X {0, 1} to the basepoint, so it factors over a morphism of orthogonal
spaces

R A ([0,1]/{0,1}) — B(R).

We letu : S' — [0, 11/{0, 1} be the composite homeomorphism

STS UM =5 10,11/(0,1) (2.5.26)

of the Cayley transform
c: 8" —> Ul), xr— x+dx-07",
and the logarithm, i.e., the inverse of the exponential homeomorphism
[0,11/{0,1} = U1), tr—> ™.
This yields a composite morphism
RAS! % R A ([0,1]/{0,1}) — B(R)
which is adjoint to a morphism of orthogonal spaces
ng : R — QBR). (2.5.27)

Proposition 2.5.28. Let R be an orthogonal monoid space with flat unit. If for
every compact Lie group G the monoid noc(R) is a group, then the morphism
nr : R — QB(R) is a global equivalence.

Proof Since R has a flat unit, the simplicial orthogonal space B.(R) is Reedy
flat by Proposition 2.5.24 (i), so the underlying orthogonal space of B(R) is
flat by Proposition 1.2.37 (i). As a flat orthogonal space, B(R) is in particular
closed. The loop space functor preserves closed inclusions by [96, Prop. 7.7],
so the pointwise loop space QB(R) is also closed as an orthogonal space. Since
R and QB(R) are both closed orthogonal spaces, we can detect global equiva-
lences on G-fixed-points, see Proposition 1.1.17.
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So we let G be a compact Lie group. Then ((QB(R))(Ug))¢ is homeomor-
phic to Q ((B(R)((UG))G), which is in turn homeomorphic to the loop space of
the geometric realization of the simplicial space

[n] +— R¥(Ue)° . (2.5.29)
We define i; : [1] — [n] by ix(0) = k — 1 and ix(1) = k. Then the morphism

(@,....0) : R*" = B,(R) — (Bi(R))" = R"

by Theorem 1.3.2 (i). Since ﬂg(R) is a group, the simplicial space (2.5.29)
satisfies the hypotheses of Segal’s theorem [153, Prop. 1.5]; so the adjoint of
the canonical map

R(UG AS' — [n] & (R*)NU)| = (BR)UG))®

is a weak equivalence. Here we have used again the fact that fixed-points
commute with geometric realization, see Proposition B.1 (iv). This adjoint is
precisely the underlying map of G-fixed-points of the morphism 7z : R —
QB(R). O

The previous proposition works for general orthogonal monoid spaces, not
necessarily commutative; in that generality the bar construction B(R) is an or-
thogonal space, but it does not have any natural multiplication. When we ap-
ply the bar construction to ultra-commutative monoids, then something special
happens: since the multiplication morphism ¢ : R ® R — R is then a homo-
morphism of ultra-commutative monoids, B.(R) is a simplicial object in the
category of ultra-commutative monoids, i.e., a simplicial ultra-commutative
monoid. The geometric realization B(R) is then canonically an ultra-commu-
tative monoid, and it coincides with the realization of B,(R) internal to the
category of ultra-commutative monoids, compare Proposition 2.1.7.

Moreover, we claim that for ultra-commutative monoids, the bar construc-
tion B(R) is naturally isomorphic to R>S !, the ‘suspension’ of R internal to the
category of ultra-commutative monoids. To see this we consider the ‘simplicial
circle’ S', the simplicial set given by

Y = {0,1,...,n},
with face maps d : (S'), — (S'),1 given by

j—1 fori< j,and
d;(j) = j fori>jandj#n,

0 fori=j=mn,
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and degeneracy maps s : (S'), — (S"),.+1 given by
.. j+1 fori< j,and
5;(J) = . C
Jj fori > j.
The simplicial set S' is based by 0; it is isomorphic to the simplicial 1-simplex
modulo its boundary, and its realization is homeomorphic to a circle, whence

the name.
The ‘obvious’ isomorphisms

ot R* =5 Re{0,1,...,n) = R>(SY), = B,R,SY,

are compatible with the simplicial structure maps as n varies, so they define an
isomorphism of simplicial ultra-commutative monoids

Pe : BJR) = B.(R,S").

When we specialize Proposition 2.1.10 to A = S!, we obtain an isomorphism
of ultra-commutative monoids

R |S'|= B(R).
The homeomorphism u : S' — [0, 1]/{0, 1} from (2.5.26) and the homeo-
morphism
[0,11/{0,1} — [S'|, 1 +—> [1,1]

turn this into an isomorphism of ultra-commutative monoids

R>S! R—} R ([0,11/{0,1}) = R |S'| = BR) (2.5.30)
whose adjoint R — QB(R) is the morphism ng of (2.5.27).
Corollary 2.5.31. For every ultra-commutative monoid with flat unit R the
adjunction unit

R R — QRb>SYH
is a global group completion.

Proof We let R be a group-like cofibrant ultra-commutative monoid. Then
R has a flat unit by Theorem 2.1.15 (ii a). Since ultra-commutative monoids
form a topological model category, R > S ! is an abstract suspension of R. The
isomorphism (2.5.30) transforms the adjunction unit R — Q(R > S!) into the
morphism 17z : R — QB(R) defined in (2.5.27). Proposition 2.5.28 shows that
this adjunction unit is a global equivalence for every cofibrant group-like ultra-
commutative monoid R. In the homotopy category Ho(umon) this implies that
for every group-like ultra-commutative monoid R the derived adjunction unit
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1 : R — Q(ZR) is an isomorphism. So Proposition 2.5.14 shows that for every
ultra-commutative monoid R the derived adjunction unit : R — Q(ZR) is a
group completion in the pre-additive category Ho(umon). For cofibrant R the
point-set level adjunction unit R — Q(R>S ') realizes the derived unit, hence
the claim follows for every ultra-commutative monoid that is cofibrant in the
global model structure of Theorem 2.1.15.

In the general case we choose a cofibrant replacement ¢ : R — R in the
global model structure of Theorem 2.1.15, i.e., a global equivalence of ultra-
commutative monoids with cofibrant source. Since R and R have flat units,
the induced morphism of bar constructions B(g) : B(R“) — B(R) is a global
equivalence by Proposition 2.5.24 (ii). Hence the morphism g>S ' : R°>S ' —
RS is a global equivalence, and so is Q(g>S ') : QR >S') — QR>S ).
The morphism 7z : R — Q(R > S!) is a global group completion by the
previous paragraph. Since 7z : R — Q(R>S') is isomorphic to the morphism
nge in the homotopy category Ho(umon), the morphism 7y is also a global
group completion. O

An example of a global group completion that comes up naturally is the
morphism i : Gr — BOP introduced in Example 2.4.2. The verification of
the group completion property will be done through a homological criterion.
For that purpose we define the homology groups of an orthogonal space Y as

H.(Y%Z) = colimyeyuy H.Y(V)%Z).

Every global equivalence induces isomorphisms on H,((-)¢;Z) for all com-
pact Lie groups G. Indeed, the functor H.((—)%;Z) takes strong level equiva-
lences to isomorphisms, which reduces the claim (by cofibrant approximation
in the strong level model structure) to global equivalences f : X — Y be-
tween flat orthogonal spaces. Flat orthogonal spaces are closed, so the global
equivalence induces weak equivalences f(Us)° : X(Us)¢ — Y(Us)° on
G-fixed-points. The poset s(U) is filtered, so homology commutes with this
colimit, i.e.,

H.(Y%:Z) = H.(Y(Us)*;Z) .
Thus the morphism f also induces an isomorphism on H,((—)%; Z).
The multiplication of an orthogonal monoid space R induces a graded mul-

tiplication on the homology groups H.(R%;Z), by simultaneous passage to col-
imits in both variables of the maps

H,(RV);Z) ® Hy(ROW)C;Z) < Hypon(ROV)C X ROW)C; Z)

((uyw)©)- G
—_— I—Iern(R(V69 W) ’Z) .
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Assigning to a path component its homology class is a map
7o(R(V)®) — Ho(R(V)?;Z)
compatible with increasing V. On colimits over s(¥) this provides a map
7§ (R) — Ho(R%;Z).

This map takes the addition in R to the multiplication in Hy(R%;Z), so its im-
age is a multiplicative subset of Hy(R®;Z). If the multiplication of R is com-
mutative, then the product of H,(R®;Z) is commutative in the graded sense. In
particular, the multiplicative subset of ﬂg(R) is then automatically central.

Proposition 2.5.32. A morphism i : R — R* of ultra-commutative monoids
is a global group completion if and only if the following two conditions are
satisfied.

(1) The ultra-commutative monoid R* is group-like, and
(1) for every compact Lie group G the map of graded commutative rings

H.(i7Z) : H(R%Z) — H.(R")%:Z)
is a localization at the multiplicative subset ﬂg(R) of Hy(R®; 7).

Proof We start by showing that a global group completion satisfies proper-
ties (i) and (ii). Property (i) holds by definition of ‘group completion’. We give
two alternative proofs for why a global group completion satisfies property (ii),
based on the two different bar construction models in Construction 2.5.20 and
Corollary 2.5.31.

The first argument uses the loop space of the bar construction B(R), which
is isomorphic to internal suspension R > S'. By Corollary 2.5.31 it suffices
to show that for every cofibrant ultra-commutative monoid R the morphism
ng : R — QR > S!) = Q(BR) has property (ii). Since R is cofibrant and the
global model structure of ultra-commutative monoids is topological (Theorem
2.1.15), the basepoint inclusion of S ! induces a cofibration

R®incl : R®{c0} — R®S.

The cobase change is the unique morphism * — R > S! from the terminal
ultra-commutative monoid to the reduced tensor, and this is thus a cofibra-
tion. In other words, B(R) = R > S ! is again cofibrant as an ultra-commutative
monoid. Since R and B(R) are cofibrant as ultra-commutative monoids, The-
orem 2.1.15 (ii) shows that their underlying orthogonal spaces are flat, hence
closed. The loop space functor preserves closed inclusions by [96, Prop.7.7],
so the pointwise loop space QB(R) is also closed as an orthogonal space.
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Since R and QB(R) are closed as orthogonal spaces, it suffices to show that
for every compact Lie group G the map

H.(R(U:)%;Z) — H.(QBR)(Uc)°;Z)

is a localization at the multiplicative subset 7o(R(U)C) of the source. Since
the H-space structure of R(U)® comes from the action of an E-operad,
the graded ring H.(R(Us)®;7Z) is graded commutative. We can thus apply
Quillen’s group completion theorem from the unpublished, but widely cir-
culated preprint ‘On the group completion of a simplicial monoid’. Quillen’s
manuscript was later published as Appendix Q of the Friedlander-Mazur paper
[56], where the relevant theorem appears on page 104 in Section Q.9.

The second, alternative, argument first reduces to cofibrant ultra-commuta-
tive monoids by cofibrant approximation in the global model of Theorem 2.1.15.
As explained in Construction 2.5.20, a group completion R* can then be con-
structed as the homotopy cofiber of the diagonal A : R — RXR, which is con-
cretely given by the geometric realization of the simplicial ultra-commutative
monoid B®(x, R, R X R), the bar construction with respect to the box prod-
uct. Segal [153, p. 305 f] sketches an argument why the resulting morphism
R — B®(x, R, R X R) is localization on homology with field coefficients. The
argument is reproduced in more detail in the proof of [47, Lemma 3.2.2.1].

Now we prove the reverse implication. We let i : R — R* be a morphism
of ultra-commutative monoids that satisfies properties (i) and (ii); we need to
show that i is a global group completion. We assume first that both R and R*
are cofibrant in the global model structure of ultra-commutative monoids of
Theorem 2.1.15. Then the unit morphisms of R and R* are flat cofibrations
of underlying orthogonal spaces by Theorem 2.1.15 (ii). So the morphism
g : R — QR >S") = QB(R) is a global group completion by Corollary
2.5.31. Since R* is group-like, the morphism 7z« is a global equivalence by
Proposition 2.5.28.

We claim that the morphism B(i) : B(R) — B(R*) is a global equivalence.
For every coefficient system L on (B(R*))(Us)® we compare the spectral se-
quence

E2, = Tor®"P(k 1) — H.(BR)U)%; L)

(obtained by filtering the bar construction by simplicial skeleta) with the anal-
ogous one for the homology of (B(R*))(Us)°. The localization hypothesis
implies that the map of Tor groups

Tor;l*(RG;k)(k, L) — TOI.;L((R*)G;k)(k, L)

is an isomorphism, see for example [140, Prop.7.17] or [187, Prop. 3.2.9]. So
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we have a morphism of first quadrant spectral sequences that is an isomor-
phism of E>-terms; the map on abutments is then an isomorphism as well.
This shows that B(i) : B(R) — B(R*) is a global equivalence. Since looping
preserves global equivalences, the morphism QB(7) is a global equivalence.
Now we contemplate the commutative square

R—i>-R*

Jo e

*
QB(R) —g7> QB(R)

The left vertical morphism is a global group completion, and the lower hori-
zontal and right vertical morphisms are global equivalences. So the upper hor-
izontal morphism i is global group completion.

Now we reduce the general case to the special case by cofibrant replace-
ment. We choose a cofibrant replacement ¢ : R° — R in the global model
structure of ultra-commutative monoids of Theorem 2.1.15, and then factor
the morphism ig : R° — R* as a cofibration i : R® — R' followed by
a global equivalence ¢ : R" — R*. Properties (i) and (ii) are invariant un-
der global equivalences of pairs, so the morphism i€ : R® — R satisfies (i)
and (ii). Since R¢ and R" are both cofibrant, the morphism i is a global group
completion by the special case above. So the morphism i is also a global group
completion. O

We showed in Theorem 2.4.13 that the ultra-commutative monoid BOP is
group-like and that its equivariant homotopy sets x,(BOP) realize the orthog-
onal representation rings additively. In Example 2.4.2 we introduced a mor-
phism i : Gr — BOP of ultra-commutative monoids from the additive Grass-
mannian and showed in Proposition 2.4.5 that for every compact Lie group G
and every G-space A, the homomorphism

[4,i]° : [A,Gr]® — [A,BOP|®

is a group completion of abelian monoids. In particular, the map ﬂg(i) : ﬂOG(Gr)
ﬂOG(BOP) is an algebraic group completion. In much the same way we can de-
fine morphisms of ultra-commutative monoids

i:Gr* — BUP and i: Gr® — BSpP
by replacing R-subspaces in V by C-subspaces in V¢, and H-subspaces in Vy.

Theorem 2.5.33. The morphisms i : Gr — BOP, i : Gr® — BUP and i :
Gr! —s BSpP are global group completions of ultra-commutative monoids.
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Proof We prove the real case in detail and leave the complex and quaternionic
cases to the reader. We verify the localization criterion of Proposition 2.5.32.
To this end we define a bi-orthogonal space, i.e., a functor

Grf : LXxL — T

on objects by

Gr'(U,V) = Gr(Ue V).

For linear isometric embeddings ¢ : U — U and ¢ : V — V, the induced
map is

Gri(p,y) : Gr'(U,V) — Gr{(U,V), L —> (p@y)(L)+ (U—-p(U))®0).

We emphasize that the behavior on morphisms is not symmetric in the two
variables, and in the first variable it is not just applying .

Now we fix a compact Lie group G and consider the colimit of the bi-
orthogonal space Gr' over the poset s(Ug) X s(Ug). Since the diagonal is
cofinal in the poset s(Us) X s(Ug), this ‘double colimit’ is also a colimit over
the restriction to the diagonal. But the diagonal of Gr'is precisely the orthog-
onal space BOP, and so

COlim(U,V)ES((Hg)Z Grﬁ(U, V) = colimWeY(:uG) BOP(W) = BOP(WG) .

On the other hand, if we fix an inner product space U as the first variable,
then Grﬁ(U, —) is isomorphic to the additive U-shift (in the sense of Example
1.1.11) of the Grassmannian Gr. Hence for fixed U,

colimyeya,) GrH(U, V) = Gr(U & Ug) .

A colimit over s(Ug) X s(Ug) can be calculated in two steps, first in one
variable and then in the other, so we conclude that

BOP(Ug) = colimf,_ ,, = Gr(U®U): (2.5.34)

under this identification, the map i(Us) : Gr(Ug) — BOP(U) becomes the
canonical morphism

# : Gr(Ug) — colimf,_ ,,  Gr(UeU)

to the colimit, for U = 0.
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The decoration ‘f” is meant to emphasize that the structure maps in this

colimit system come from the functoriality of Gr in the first variable,
so they are not the maps obtained by applying Gr(— & Ug) to an inclusion
U c U. For example, the maps in the colimit (2.5.34) do not preserve the N-
grading by dimension. So one should not confuse the colimit (2.5.34) with the
space Gr(Ug ® Ug), which is G-homeomorphic to Gr(Us) by a choice of
equivariant linear isometry U & Us = Ug.

We claim that the map

H.(*)°) :+ HAGr(Ue)°) — H.(colim!_ . Gr(UeUs)®) (2535

is a localization at the multiplicative subset ng(Gr), where homology stands
for singular homology with integer coefficients. To see this we observe that all
the maps in the colimit system are closed embeddings; so singular homology
commutes with this particular colimit.

For U € s(Ug) we denote by jy : Gr(Us)¢ — Gr(U & Us)© the map
induced by applying the direct summand inclusion U — U & Ug. The map
Jju is a homotopy equivalence because U is a complete G-universe. For all
U c V in s(Ug) the following square commutes

HA(Gr(Us)®) — T+ H(Gr(Us)%)
H*(ju)LE ElH«jv)
H.(Gr(U & Us)°) H.(Gr(V & Us)°)

Ly
and the vertical maps are isomorphisms. So the target of (2.5.35) is the colimit
of the functor on s(U) that takes all objects to the ring H,(Gr(Us)°; Z) and
an inclusion U C V to multiplication by the class [V — U] in the multiplicative
subset under consideration. Hence the map (2.5.35) is indeed a localization as
claimed. Since the ultra-commutative monoid BOP is group-like, the criteria
of Proposition 2.5.32 are satisfied, and so the morphism i : Gr — BOP is a
global group completion. O

Remark 2.5.36. We had earlier defined an E,-orthogonal monoid space BOP’
as a mixture of bOP and BOP: the value at an inner product space V is

BOP/(V) = ]_[mzo Gra(VP®R™) .

The structure maps and an E.,-multiplication can be defined in essentially the
same way as for BO’, which was defined in (2.4.26). So BOP’ becomes the
Z-graded periodic analog of the orthogonal space BO’. In the same way as for
the homogeneous degree 0 summands in (2.4.27), we defined two morphisms
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of E-orthogonal monoid spaces
bOP - BOP’ <~ BOP.

The same arguments as in Proposition 2.4.22 show that the morphism b is a
global equivalence. A very similar argument to that in Theorem 2.5.33 shows
that the morphism a is a global group completion in the homotopy category of
E.-orthogonal monoid spaces. Strictly speaking we would first have to justify
that the homotopy category is pre-additive (which we won’t do), so that the
formalism of group completions applies.

As we argued in Proposition 2.4.29, the E-structure on bO cannot be re-
fined to an ultra-commutative multiplication. The argument was based on an
algebraic obstruction that exists in the same way in ,(bOP), so bOP cannot be
refined to an ultra-commutative monoid either. The fact that bOP has an ultra-
commutative group completion can be interpreted as saying that in this partic-
ular case ‘global group completion kills to obstruction to ultra-commutativity’.

Bott periodicity is traditionally seen as a homotopy equivalence between the
space Z X BU and the loop space of the infinite unitary group U. Since a loop
space only sees the basepoint component, and the loop space of BU is weakly
equivalent to U, the 2-fold periodicity then takes the form of a chain of weak
equivalences:

QX (Z x BU) =~ Q(QBU)) ~ QU =~ Z x BU .

We are going to prove a highly structured version of complex Bott periodic-
ity, in the form of a global equivalence of ultra-commutative monoids between
BUP and QU. Bott periodicity has been elucidated from many different an-
gles, and before we start, we put our approach into perspective. Since Bott’s
original geometric argument [23] a large number of different proofs have be-
come available, see for example [79] for an overview. In essence, our proof of
global Bott periodicity is an adaptation of Harris’ proof [70] of complex Bott
periodicity. The reviewer for Math Reviews praises Harris proof as ‘a beautiful
well-motivated proof of the complex Bott periodicity theorem using only two
essential properties of the complex numbers’. Suslin [169] calls this the ‘trivial
proof” of Bott periodicity and extends it to a ‘Real’ (i.e., C»-equivariant) con-
text. I also think that for readers with a homotopy theory background, Harris’
proof may be particularly accessible and appealing.

Harris’ argument uses two main ingredients. On the one hand, the group
completion theorem is used to identify the loop space of the bar construction
of 1,50 Gr, (under the monoid structure induced by orthogonal direct sum)
with Z x BU. On the other hand, Harris exhibits an explicit homeomorphism
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between the bar construction of 1,59 Gr, and the infinite unitary group, essen-
tially the inverse to the eigenspace decomposition of a unitary matrix. Together
these two ingredients provide a chain of weak equivalences

ZXxBU =~ Q(B(U,s Gr,) = QU .

Our global proof is analogous: Theorem 2.5.33 above shows that BUP is a
global group completion of Gr®, essentially by applying the group comple-
tion theorem to all fixed-point spaces. This part of the argument works just as
well for the real and symplectic versions of Gr™ and BUP. Theorem 2.5.40
below shows that QU is also a global group completion of Gr®, by globally
identifying the bar construction of Gr° (with respect to the box product of
orthogonal spaces) with U, using Harris’ homeomorphism between the re-
alization IGr&(W)I and U(W¢). Two global group completions of the same
ultra-commutative monoid are necessarily globally equivalent, which yields
the global version of complex Bott periodicity of Theorem 2.5.41.

Construction 2.5.37 (Global Bott periodicity). After this outline, we now
provide the necessary details. The ultra-commutative monoid U of unitary
groups was defined in Example 2.3.7. The orthogonal space QU inherits an
ultra-commutative multiplication by pointwise multiplication of loops, where
Q means objectwise continuous based maps from S'. We define a morphism
of ultra-commutative monoids

B Gr — QU (2.5.38)
at an inner product space V by

BW)L)(x) = c(x)-pL + pr- -
Here L is a complex subspace of V¢, x € S,
x+1i

c: 8" —> U1, xr— -,
X—1

is the Cayley transform, and p; and p;. denote the orthogonal projections to L
and to its orthogonal complement. In other words, L and L* are the eigenspaces
of B(V)(L)(x), for the eigenvalues c(x) and 1, respectively. Then

BV)O)x) = py. = ldy, ;

so B(V)(0) is the constant loop at the identity, which is the unit element of
QU(V). Now we consider subspaces L € Gr°(V) and L’ € Gr°(W). Then

BV W)L L)x) = (c(X)- prer) + Prrew): (2.5.39)
((c(x) - pr) + prr)®(c(x) - pr) + pans)
BWV)L)(x) ®BW)(L)(x) .
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In other words, the square

Gro(v) x GrEw) —222_ ouvy x QUw)
eal l#‘&“ﬁv
C
Gro(Ve W) T QU(V & W)

commutes, i.e., 8 is compatible with the multiplications on both sides. Since 3
respects multiplication and unit, it also respects the structure maps. The upshot
is that 8 is a morphism of ultra-commutative monoids.

The category of ultra-commutative monoids is tensored and cotensored over
based spaces, so the functor of taking objectwise loops is right adjoint to the
functor —>S ! defined in (2.1.9). For an ultra-commutative monoid R, the based
tensor Rt> S is isomorphic to the bar construction B(R), compare (2.5.30).

Theorem 2.5.40. The adjoint 8 : B(Gr®) = Gr°>S' —s U of the morphism
B : Gr° — QU is a global equivalence of ultra-commutative monoids. The
morphism B : Gr® — QU is a global group completion of ultra-commutative
monoids.

Proof We factor 8 as a composite of two morphisms of ultra-commutative
monoids

B(Gr®) = |B.(Gr%)| %’ IGry,,| %’ U

then we show that the morphism ¢ is a global equivalence and the morphism €
is an isomorphism. Together this shows the first claim.

The middle object is the realization of a simplicial ultra-commutative monoid
Gr(gw and the first morphism is the realization of a simplicial morphism. The
object of n-simplices Gr(&) is the ultra-commutative monoid of n-tuples of pair-
wise orthogonal complex subspaces, i.e.,

GrSD(V) = {(L,...,Ly) € (GF'*(Ve))" : L;is orthogonal to L; for i # j} .

For varying n, the ultra-commutative monoids Gr;cn) assemble into a simplicial
ultra-commutative monoid: the face morphisms

%, C C
d; + Gr,, — Gr;_,,
are given by

(Lo, ..., Ly) fori=0,
d?(Ll,...,Ln) =¢ (L1,...,Li,Li®Liy1,Liyp, ..., L) for0<i<n,
(Li,...,Lyo1) for i = n.
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Forn > 1and 0 <i < n — 1 the degeneracy morphisms are given by
si(Ly,...,Lys1) = (Lyy.. ., Li, 0, Ligy, ..., Lyy)
The direct sum maps

Gro(V) x -+ x Gr°(V,) — Griy (Vi ®---®V,)
(Ll,- ~-’Ln) — (il(Ll)’- . ~sin(Ln))

form a multi-morphism, where i, : (Viy)c — (V1 ®---@®V,,)c is the embedding
as the kth summand. The universal property of the box product turns this multi-
morphism into a morphism of orthogonal spaces

L o By(Gr®) = (Gr)* — Gry, .

The morphisms ¢, are compatible with the simplicial face and degeneracy
maps, since these are given by orthogonal direct sum and insertion of O on both
sides. So for varying n, they form a morphism of simplicial ultra-commutative
monoids

Lo B.(Grc) — Gr(<c;>.

We claim that £, is a global equivalence for every n > 0. Since Gr® =
[ ,20 Gr™!/ and the box product distributes over disjoint unions, (Gr®)™ is
the disjoint union of the orthogonal spaces

GrC,ljll K- X GrC,[jn]

indexed over all tuples (ji, ..., j,) € N". The orthogonal space Gr%:l> has an

analogous decomposition, where Gri’y il consists of those tuples (Ly,...,L,)
with dim(L;) = j;. The morphism ¢, respects the decomposition, i.e., it matches
the two summands indexed by the same tuple (ji, ..., j,). A disjoint union of
global equivalences is a global equivalence (Proposition 1.1.9 (v)), so we are

reduced to showing that each of the morphisms

is a global equivalence. This is in fact a restatement of an earlier result about
box products of orthogonal spaces ‘represented’ by unitary representations.
In Construction 1.3.10 we defined an orthogonal space LS,W from a unitary
representation W of a compact Lie group G. The value at a euclidean inner
product space V is

Low(V) = LEW,Vo)/G .

Here LC is the space of C-linear maps that preserve the hermitian inner prod-
ucts. In the special case of the tautological U(n)-representation on C", the
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homeomorphisms
LEC", Vo)/U(n) — Gri(Vo) = Gr*M(V), ¢ -Um) — ¢(C"

form an isomorphism of orthogonal spaces L, -, = Gro™, Similarly, pas-
sage to images provides an isomorphism of orthogonal spaces

c o (o Clitiil
LiGowexvGcio-ecn = GT :

Under these identifications, the morphism ¢, ; becomes the morphism

. . 1C C C
gU(jl) ,,,,, U(jn),C1,...Cin -+ LU(j]),le X ELU(J'”)’(CJ'M LU(j|)><--<><U(j,,),CflEB--{BC!'" ’

the iterate of the morphism discussed in Proposition 1.3.12. Proposition 1.3.12
thus shows that the morphism (j, _; is a global equivalence. This completes
the proof that the morphism ¢, : (Gr®)® — Gr((c;l> is a global equivalence.

Now we observe that the underlying simplicial orthogonal spaces of source
and target of £, are Reedy flat in the sense of Definition 1.2.36, i.e., all latch-
ing morphisms (in the simplicial direction) are flat cofibrations of orthogonal
spaces. Indeed, the unit of the ultra-commutative monoid Gr© is the inclusion
of the summand Gr™!® into the disjoint union of all Gr™!. Since the orthog-
onal space Gr™ is isomorphic to L%(n),C”’ it is flat by Proposition 1.3.11 (ii).
So Gr® has a flat unit, and its bar construction is Reedy flat by Proposition
2.5.24 (i). Since Gréc;> is not the bar construction of any orthogonal monoid
space, we must show Reedy flatness directly. Each simplicial degeneracy mor-
phism of Gr(g) inserts the zero vector space in one slot; so the degeneracy
morphisms are embeddings of summands in a disjoint union. The latching
morphism

Ln(Gry,,)) — Gr,

is then also the inclusion of certain summands, namely those Groliin]

105€ By
which j; = O for at least one i. Since the summand Gri’g’ i) g isomorphic

to LS(], Yo xU i) Ot BT it is flat by Proposition 1.3.11 (ii). This verifies the
)R n)s

Reedy flatness condition for Gr(<c.>. Since source and target of the morphism ¢,
are Reedy flat as simplicial orthogonal spaces, and £, is a global equivalence
in every simplicial dimension, the induced morphism of realizations

£ =16 BGIY) = |BJ(GIY)| — [Gry|

is a global equivalence by Proposition 1.2.37 (ii).

The isomorphism of ultra-commutative monoids € : |Gr€>| = U is taken
from Harris [70, Sec.2, Thm.], and we recall it in some detail for the con-
venience of the reader. We let V be an inner product space and consider the
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continuous map
& 1 Gr,(V)xA" — U(Ve)
n .
(Liveooi Lyt = [ ] exp(@rity - pr).

where p; : Vo — V¢ is the orthogonal projection onto L. In other words,
€(Li1,...,Ly; t1,. .., 1,)is the unitary automorphism of V¢ that has L; as eigen-
space with eigenvalue exp(2rit;), and is the identity on the orthogonal comple-
ment of all the L;. We have the relations

€(Lyy...,Ly; 0t tym1) = €-1(Lpy. ..y s tyy ooy ty)
and

&Ly Lys tryo s tym1, 1) = €1(Lyye ooy Ly ty oo t01)
because exp(0) = exp(2ni - p1) = Idy,.; moreover,
€(Li,....,Ly t,.. tistioytyo1) = €-1(Ly, ..., Li®Liy1, ..., Ly t, ... t—1)

for all 0 < i < n, because exp(2nit - py,) - exp(2mit - py,,,) = exp(2nit - pror,.,);
and finally
€n+1(L1, -5 Liy 0, Livy, oo Lps By e oo Eng)
= En(Ll""’Ln; tla"'7ﬁ+\19""t}’l+l)
for all 0 < i < n. So the maps €, are compatible with the equivalence relation
defining geometric realization, and they induce a continuous map

V) 1 Gr, (V) — U(Vo).

The map (V) is bijective because every unitary automorphism is diagonaliz-
able with pairwise orthogonal eigenspaces and eigenvalues in U(1). As a con-
tinuous bijection from a compact space to a Hausdorff space, (V) is a home-
omorphism. The homeomorphisms (V) are compatible with linear isometric
embeddings in V and the ultra-commutative multiplications on both sides, i.e.,
they define an isomorphism of ultra-commutative monoids € : |Gr<C;>| =U.

Now we can conclude the proof. Unraveling all definitions shows that the
composite

Gr° AS' — B(Gr° i> |Gr€>| N
is given at an inner product space V by the map

GrP(Vo)AS! —  U(Ve)
LAx > exp(2ni-log(c(x)) - pr) = c¢(x)-pr + prr = BVIL)(x) .
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This means that the original morphism g is the composite

Gr® 22, apcr® 29 ety 29 au,

where 1, was defined in (2.5.27). Thus the adjoint B’ factors as € o £, a
global equivalence followed by an isomorphism. So 8 is a global equivalence
of ultra-commutative monoids.

We showed above that Gr® has a flat unit, so the adjunction unit ng,c is
a global group completion by Corollary 2.5.31. Since 8’ is a global equiva-
lence, so is Q(B). Hence the composite 8 : Gr® — QU is a global group
completion. O

Theorem 2.5.33 and Theorem 2.5.40 show that the morphisms
i:Gr° — BUP and pB:Gr° — QU

are both global group completions. The universal property of group comple-
tions already implies that BUP is isomorphic to QU in the homotopy category
of ultra-commutative monoids; the two can thus be linked by a chain of global
equivalences of ultra-commutative monoids. In a sense we could stop here, and
call this ‘complex global Bott periodicity’. However, we elaborate a bit more
and exhibit an explicit chain of two global equivalences between BUP and QU,
see Theorem 2.5.41 below.
We define a morphism of ultra-commutative monoids

B : BUP — Q(shy U).

Here shg = shg2 is the multiplicative shift by R? defined in Example 1.1.11.
The orthogonal space U has a commutative multiplication by direct sum of
unitary automorphisms; thus Q(shg U) inherits a commutative multiplication
by pointwise multiplication of loops. The target of B is globally equivalent,
as an ultra-commutative monoid, to QU, the objectwise loops of the unitary
group monoid. The definition of the map

B(V) : BUP(V) — Q(shg U)(V) = map(S', U(V2)),

for an inner product space V, is similar to, but slightly more elaborate than the
definition of (V) in (2.5.38) above. An element of BUP(V) is a complex sub-
space L of V2; as before we denote by p; and p;. the orthogonal projections
to L and to its orthogonal complement. We define the loop

BVXL) : S' — UV
by
BWVYL)(x) = ((c(x)- pr) + pre) o ((c(=x) - pveso) + Poeve) -
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Asbeforec : S! — U(1) is the Cayley transform. The map S(V) is continuous
in L.
For every inner product space V we have

BW)(Ve@0)(x) = ((c(x)- pveen) + Poave) © (c(=X) - pyveeo) + Posve) = dv, ;

so B(V)(Vc @0) is the constant loop at the identity, which is the unit element of
Q(shg U)(V). Now we consider subspaces L € BUP(V) and L' € BUP(W). We
recall that "% : V2 @ W2 = (V& W)y, is the preferred natural isometry, which
enters into the definition of the multiplication of BUP. The argument for the
additivity relation

BVeW)LeL)x) = &Y (BV)L)(x) & BW)L ()

is straightforward and similar to (but somewhat longer than) the argument for
the map £ in (2.5.39), and we omit it. Hence f is compatible with the multipli-
cations on both sides. Since f3 respects multiplication and unit, it also respects
the structure maps. The upshot is that 5 is a morphism of ultra-commutative
monoids. We also have

det(B(V)(L)(x)) = det((c(x) - p) + pr+) - det((c(=x) - pye0) + Posve)

= c()dim@-dim(V)

exploiting c(—x) = ¢(x) = c(x)™". So the map (V) : BUP(V) — QU(V2)
sends the subspace BU(V) = BUP(V) to Q(S U(Vé)). Hence the morphism
restricts to a morphism of ultra-commutative monoids

B . BU — Q(shg SU).

Now we can properly state our global version of complex Bott periodicity.
The embeddings j : Vo — Vé as the first summand induce a morphism of
ultra-commutative monoids U o j : U — shg U.

Theorem 2.5.41 (Global Bott periodicity). The morphisms of ultra-commutative

monoids
B Q(Uo)
BUP — Q(shgU) «——— QU

are global equivalences. The morphism B\ : BU — Q(shg SU) is a global
equivalence.

Proof The morphism U o j is a global equivalence by Theorem 1.1.10, hence
sois Q(Uo j). The following diagram of homomorphisms of ultra-commutative
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monoids commutes by direct inspection:

Gr° —ﬁ> QU
ll lQ(Uoj)
BUP — Q(sh, U)

The morphism B : Gr® — QU is a global group completion by Theorem
2.5.40. So the composite Q(U o j) o8 : Gr® — Q(shg U) with a global equiv-
alence is also a global group completion. The morphism i : Gr® — BUP
is a global group completion by Theorem 2.5.33. The universal property of
group completions then shows that 5 : BUP — Q(shg U) becomes an iso-
morphism in the homotopy category of ultra-commutative monoids. Since the
global equivalences are part of a model structure, this implies that 5 : BUP —
Q(shg U) is a global equivalence. Since the morphism %! : BU — Q(shg, SU)
is a retract of the global equivalence f§, it is a global equivalence itself. O

Corollary 2.5.42. For every compact Lie group G and every finite G-CW-
complex A, the map

[A,81° : [A,Gr°]° — [A,QUI°
is a group completion of abelian monoids.

Proof We contemplate the following commutative square of abelian monoid
homomorphisms:

[AB1°

[4, Grc)¢ [4, QU]

[A,i]Gj = l [A,Q(Uoj)1¢

[A,BUP]® ——— [A, Q(shg U)|°

[ABI°

Since 8 and Q(U o j) are global equivalences by Theorem 2.5.41, the two
homomorphisms [A, ]¢ and [A, Q(U o j)]¢ are isomorphisms, by Proposition
1.5.3 (ii). The morphism [A, i]¢ is a group completion of abelian monoids by
Proposition 2.4.5 (or rather its complex analog, which is proved analogously).
So [A,B1° : [A,Gr%1 — [A,QUIC is also a group completion of abelian
monoids. O
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Equivariant stable homotopy theory

In this chapter we give a largely self-contained exposition of many basics about
equivariant stable homotopy theory for a fixed compact Lie group; our model
is the category of orthogonal G-spectra. In Section 3.1 we review orthogo-
nal spectra and orthogonal G-spectra; we define equivariant stable homotopy
groups and prove their basic properties, such as the suspension isomorphism
and long exact sequences of mapping cones and homotopy fibers, and the ad-
ditivity of equivariant homotopy groups on sums and products. Section 3.2
discusses the Wirthmiiller isomorphism that relates the equivariant homotopy
groups of a spectrum over a subgroup to the equivariant homotopy groups of
the induced spectrum; intimately related to the Wirthmiiller isomorphism are
various transfers that we also recall. In Section 3.3 we introduce and study ge-
ometric fixed-point homotopy groups. We establish the isotropy separation se-
quence that facilitates inductive arguments, and show that equivariant equiva-
lences can also be detected by geometric fixed-points. We use geometric fixed-
points to derive a functorial description of the Oth equivariant stable homotopy
group of a G-space Y in terms of the path components of the fixed-point spaces
Y# . Section 3.4 gives a self-contained proof of the double coset formula for the
composite of a transfer followed by a restriction to a closed subgroup. We also
discuss various examples and end with a discussion of Mackey functors for
finite groups. After inverting the group order, the category of G-Mackey func-
tors splits as a product, indexed by conjugacy classes of subgroups, of module
categories over the Weyl groups, see Theorem 3.4.22. We show that rationally
and for finite groups, geometric fixed-point homotopy groups can be obtained
from equivariant homotopy groups by dividing out transfers from proper sub-
groups. Section 3.5 is devoted to multiplicative aspects of equivariant stable
homotopy theory. In our model, all multiplicative features can be phrased in
terms of the smash product of orthogonal spectra (or orthogonal G-spectra),
another example of a Day type convolution product. The smash product gives
rise to pairings of equivariant homotopy groups; when specialized to equiv-
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ariant ring spectra, these pairings turn the equivariant stable homotopy into
graded rings.

We do not discuss model category structures for orthogonal G-spectra; the
interested reader can find different ones in the memoir of Mandell and May
[108], in the thesis of Stolz [163], the article by Brun, Dundas and Stolz [32]
and (for finite groups) in the paper of Hill, Hopkins and Ravenel [77].

3.1 Equivariant orthogonal spectra

In this section we begin to develop some of the basic features of equivariant
stable homotopy theory for compact Lie groups in the context of equivariant or-
thogonal spectra. After introducing orthogonal G-spectra and equivariant sta-
ble homotopy groups, we discuss shifts by a representation and show that they
are equivariantly equivalent to smashing with the representation sphere (Propo-
sition 3.1.25). We establish the loop and suspension isomorphisms (Proposi-
tion 3.1.30) and the long exact homotopy group sequences of homotopy fibers
and mapping cones (Proposition 3.1.36). We prove that equivariant homotopy
groups take wedges to sums and preserve finite products (Corollary 3.1.37).
We end by showing that the equivariant homotopy group functor 7TOH , for a
closed subgroup H of a compact Lie group G, is represented by the unreduced
suspension spectrum of the homogeneous space G/H (Proposition 3.1.46).

We recall orthogonal spectra. These objects are used, at least implicitly,
already in [112]; the term ‘orthogonal spectrum’ was introduced by Mandell,
May, Shipley and the author in [107], where the (non-equivariant) stable model
structure for orthogonal spectra was constructed. Orthogonal spectra are stable
versions of orthogonal spaces, and before recalling the formal definition we
try to motivate it — already with a view towards the global perspective. An or-
thogonal space Y assigns values to all finite-dimensional inner product spaces.
The global homotopy type is encoded in the G-spaces Y(Ug), where U is
a complete G-universe, which we can informally think of as ‘the homotopy
colimit of Y(V) over all G-representations V. So besides the values Y(V), an
orthogonal space uses the information about the O(V)-action (which is turned
into a G-action when G acts on V) and the information about inclusions of
inner product spaces (in order to be able to stabilize to the colimit Us). The
information about the O(V)-actions and how to stabilize are conveniently en-
coded together as a continuous functor from the category L of linear isometric
embeddings.

An orthogonal spectrum X is a stable analog of this: it assigns a based space
X(V) to every inner product space, and it keeps track of an O(V)-action on



3.1 Equivariant orthogonal spectra 229

X(V) (to get G-homotopy types when G acts on V) and of a way to stabilize
by suspensions (needed when exhausting a complete universe by its finite-
dimensional subrepresentations). When doing this in a coordinate-free way,
the stabilization data assigns to a linear isometric embedding ¢ : V — W oa
continuous based map

0x 2 SV AX(V) — X(W)

where W —¢(V) is the orthogonal complement of the image of ¢. This structure
map should ‘vary continuously with ¢’, but this phrase has no literal meaning
because the source of ¢, depends on ¢. The way to make the continuous de-
pendence rigorous is to exploit the fact that the complements W — ¢(V) vary
in a locally trivial way, i.e., they are the fibers of a distinguished vector bun-
dle, the ‘orthogonal complement bundle’, over the space of L(V, W) of linear
isometric embeddings. All the structure maps ¢, together define a map on the
smash product of X(V) with the Thom space of this complement bundle, and
the continuity of the dependence on ¢ is formalized by requiring continuity of
that map. All these Thom spaces together form the morphism spaces of a based
topological category, and the data of an orthogonal spectrum can conveniently
be packaged as a continuous based functor on this category.

Construction 3.1.1. We let V and W be inner product spaces. Over the space
L(V, W) of linear isometric embeddings sits a certain ‘orthogonal complement’
vector bundle with total space

EV.W) = {(w,@ e WXL(V,W)[w Leo(V)}.

The structure map &(V, W) — L(V, W) is the projection to the second factor.
The vector bundle structure of &(V, W) is as a vector subbundle of the trivial
vector bundle W x L(V, W), and the fiber over ¢ : V — W is the orthogonal
complement W — ¢(V) of the image of ¢.

We let O(V, W) be the Thom space of the bundle £(V, W), i.e., the one-point
compactification of the total space of &(V, W). Up to non-canonical homeo-
morphism, we can describe the space O(V, W) differently as follows. If the
dimension of W is smaller than the dimension of V, then the space L(V, W)
is empty and O(V, W) consists of a single point at infinity. Otherwise we can
choose a linear isometric embedding ¢ : V — W, and then the maps

OW)/OW — (V) — L(V,W), A-OW-¢(V)) — Ap and
OW) =ow-pvy SV V) — OV, W), [A,w] — (Aw,Ap)

are homeomorphisms. Here, and in the following, we write

GxgA = (Gy)AgA = (G ANA)/ ~
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for a closed subgroup H of G and a based G-space A; the equivalence relation
isghAa ~ gAhaforall (g,h,a) € GXHXA. Put yet another way: ifdimV =n
and dim W = n + m, then L(V, W) is homeomorphic to the homogeneous space
O(n+m)/O(m) and O(V, W) is homeomorphic to O(n+m)<pq,S™. The vector
bundle £(V, W) becomes trivial upon product with the trivial bundle V, via the
trivialization

VW)XV = WXLV, W), (W, 0),v) — (w+eW),¢).

When we pass to Thom spaces on both sides this becomes the untwisting home-
omorphism:
OV, W)ASY = SV ALV, W), . (3.1.2)

The Thom spaces O(V, W) are the morphism spaces of a based topological
category. Given a third inner product space U, the bundle map

covers the composition map L(V, W) X L(U, V) — L(U, W). Passage to Thom
spaces gives a based map

o: O(V,W)yAO(U,V) — O, W)

which is clearly associative, and is the composition in the category O. The
identity of V is (0, Idy) in O(V, V).

Definition 3.1.3. An orthogonal spectrum is a based continuous functor from
O to the category T. of based spaces. A morphism of orthogonal spectra is
a natural transformation of functors. We denote the category of orthogonal
spectra by Sp.

Given two inner product spaces V and W we define a continuous based map
iv : SY — OW,VeWw) by v ((n0),0,-),

where (0,—) : W — V @ W is the embedding of the second summand. We
define the structure map oy : SY A X(W) — X(V & W) of the orthogonal
spectrum X as the composite

v iV AX(W) X
S"AX(W) —— OW,VeW)AX(W) — X(VeW). (3.1.4)
Often it will be convenient to use the opposite structure map

oy - XV)ASY — X(VeWw) (3.1.5)

which we define as the following composite:

wis oW, X(tyw)
XN ASY 2 sWaxwv) 2% xawev) 2 x(ve w)
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Remark 3.1.6 (Coordinatized orthogonal spectra). Every inner product space
is isometrically isomorphic to R" with standard inner product, for some n > 0.
So the topological category O has a small skeleton, and the functor category of
orthogonal spectra has ‘small’ morphism sets. This also leads to the following
more explicit coordinatized description of orthogonal spectra in a way that
resembles a presentation by generators and relations.

Up to isomorphism, an orthogonal spectrum X is determined by the values
X, = X(R") and the following additional data relating these spaces:

e a based continuous left O(n)-action on X,, for each n > 0,
e based maps o, : S'AX, — Xj4nforn > 0.

This data is subject to the following condition: for all m,n > 0, the iterated
structure map S A X, — X+, defined as the composition

—1 -2
S" ATy, S"TEAT 14 Tn—14n

S™A Xy ———=8"" A Xy Xinsn

is (O(m) x O(n))-equivariant. Here the group O(m) x O(n) acts on the target by
restriction, along orthogonal sum, of the O(m + n)-action. Indeed, the map

o), — ORLR"), A +— (0,4)

is a homeomorphism, so O(n) ‘is’ the endomorphism monoid of R” as an object
of the category O; via this map, O(n) acts on the value at R” of any functor on
O. The map o, = orpe is just one of the structure maps (3.1.4).

Definition 3.1.7. Let G be a compact Lie group. An orthogonal G-spectrum is
a based continuous functor from O to the category GT. of based G-spaces. A
morphism of orthogonal G-spectra is a natural transformation of functors. We
write GSp for the category of orthogonal G-spectra and G-equivariant mor-
phisms.

A continuous functor to based G-spaces is the same data as a G-object of
continuous functors. So orthogonal G-spectra could equivalently be defined
as orthogonal spectra equipped with a continuous G-action. An orthogonal G-
spectrum X can be evaluated on a G-representation V, and then X(V) is a (G X
G)-space by the ‘external’ G-action on X and the ‘internal’ G-action from the
G-action on V and the O(V)-functoriality of X. We consider X(V) as a G-space
via the diagonal G-action. If V and W are G-representations, then the structure
map (3.1.4) and the opposite structure map (3.1.5) are G-equivariant where the
group G also acts on the representation spheres.

Remark 3.1.8. Our definition of orthogonal G-spectra is not the same as the
one used by Mandell and May [108] and Hill, Hopkins and Ravenel [77], who
define orthogonal G-spectra as G-functors on a G-enriched extension of the
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category O that contains all G-representations as objects. However, our cate-
gory of orthogonal G-spectra is equivalent to theirs by [108, V Thm. 1.5]. The
substance of this equivalence is the fact that for every orthogonal G-spectrum
in the sense of Mandell and May, the values at arbitrary G-representations are
in fact determined by the values at trivial representations.

Next we recall the equivariant stable homotopy groups 7¢(X) (indexed by
the complete G-universe) of an orthogonal G-spectrum X. We introduce a con-
venient piece of notation. If ¢ : V — W is a linear isometric embedding and
f:8Y — X(V) a continuous based map, we define ¢.f : S¥ — X(W) as
the composite

w Wog(V) x oV ST cwepv)
SV = SVHFIANSY ——— SV AX(V) (3.1.9)
S X(W - (V)@ V) s X(W)
where two unnamed homeomorphisms use the linear isometry

W—-oV)eV =W, Wv) — w+e®).

For example, if ¢ is bijective (i.e., an equivariant isometry), then ¢, f becomes
the ¢-conjugate of f, i.e., the composite

o1 : X
s v L oxony 29 xowy.

The construction is continuous in both variables, i.e., the map
L(V, W) x map,(S¥,X(V)) — map,(S",X(W)), (¢.f) — ¢.f

is continuous.

As before we let s(Ug) denote the poset, under inclusion, of finite-dimensional
G-subrepresentations of the chosen complete G-universe Ug. We obtain a
functor from s(Ug) to sets by sending V € s(Ug) to

[sV,X()°,

the set of G-equivariant homotopy classes of based G-maps from SV to X(V).
For V € W in s(Ug) the inclusion i : V — W is sent to the map

i o SV, X0 — SV, X%, [f] — [if].
The Oth equivariant homotopy group nOG(X) is then defined as
75 (X) = colimyeyas [SY, X%,

the colimit of this functor over the poset s(U).
The sets ng (X) have a lot of extra structure; we start with the abelian group
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structure. We consider a finite-dimensional G-subrepresentation V of the uni-
verse Us with non-zero fixed-points. We choose a G-fixed unit vector vy € V,
and we let V* denote the orthogonal complement of vy in V. This induces a
decomposition

ReV:t =V, (tv) — tyy+v

that extends to a G-equivariant homeomorphism S' A S"" = SV on one-point
compactifications. From this we obtain a bijection

SV, X(V)I¢ = [S",mapS(SY", X(V)]. = m(mapS(S¥",X(V))), (3.1.10)

natural in the orthogonal G-spectrum X. We use the bijection (3.1.10) to trans-
fer the group structure on the fundamental group into a group structure on the
set [SY, X(V)I°.

Now we suppose that the dimension of the fixed-point space V is at least 2.
Then the space of G-fixed unit vectors in V is connected and similar arguments
as for the commutativity of higher homotopy groups show:

e the group structure on the set [S", X(V)]¢ defined by the bijection (3.1.10)
is commutative and independent of the choice of G-fixed unit vector;

o if W is another finite-dimensional G-subrepresentation of Ug containing V,
then the map

it [$V. X% — [sY. X(m)I°
is a group homomorphism.

The G-subrepresentations V of U with dim(V®) > 2 are cofinal in the poset
s(Ug), so the two properties above show that the abelian group structures on
[SV, X(V)]C for dim(V®) > 2 assemble into a well-defined and natural abelian
group structure on the colimit ng X).

We generalize the definition of nOG(X) to integer graded equivariant homo-
topy groups of an orthogonal G-spectrum X. If k is a positive integer, then we
set

2%(X) = colimyeyar [SV, X(V)I¢  and (3.1.11)
7%.(X) = colimyeya,) [S”, X(V @ RHIC .

The colimits are taken over the analogous stabilization maps as for ﬂg, and
they come with abelian group structures by the same reasoning as for nOG(X ).

Definition 3.1.12. A morphism f : X — Y of orthogonal G-spectrais a -
isomorphism if the induced map #f (f) : #! (X) — #f/(Y) is an isomorphism
for all closed subgroups H of G and all integers k.
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Construction 3.1.13. While the definition of ﬂf(X ) involves a case distinction
in positive and negative dimensions k, every class in ﬂkG(X ) can be represented
by a G-map

i SVeRY _ X(VeRY)

for suitable n € N such that n + k > 0. Moreover, V can be any finite-
dimensional G-representation, not necessarily a subrepresentation of the cho-
sen complete G-universe. Since we will frequently use this way to represent
elements of ﬂkG(X), we make the construction explicit here.

We start with the case k > 0. We choose a G-equivariant linear isometry
j: VeR" — V onto a G-subrepresentation V of Ug. Then the composite

ert (S9! - X(j _
gvert 21, gvert L, yivery 2D x(7)

represents a class (f) € ﬂkG(X). For k < 0, we choose a G-equivariant linear
isometry j : V @ R"* — V onto a G-subrepresentation V of Ug. Then the
composite

sy -

Y n+k X(joR _
sV 5 svert L xwery 2 x(wert

represents a class (f) € ﬂf(X).

We also need a way to recognize that ‘stabilization along a linear isometric
embedding’ does not change the class in ﬂkG(X). For thisweletp : V — W
be a G-equivariant linear isometric embedding and f : § Ve¥"™" — X(V @ R)
a continuous based G-map as above. We define ¢, f : SV — X(W @ R")
as the composite

WeRMk W-o(V) VeRMk SWeWMIAf W—p(V) n
S = §VTHYIAS — ST AX(VORY

TV (W = (V) @ V @ R") — X(W @ R") ;
the two unnamed homeomorphisms use the linear isometry

W—-o(V)®VaoR" = WaR", W,v,x) — W+ @), x)

for m = n + k and m = n, respectively. In the special case n = k = 0, this
construction reduces to (3.1.9).

The same reasoning as in the unstable situation in Proposition 1.5.8 shows
the following stable analog:

Proposition 3.1.14. Let G be a compact Lie group and X an orthogonal G-
spectrum. Let V be a G-representation and f : S veR™t __, X(VeR") abased
continuous G-map, where n € N and k € Z are such that n + k > 0.
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(1) The class (f) in nf(X) is independent of the choice of linear isometry
onto a subrepresentation of Ug.

(ii) For every G-equivariant linear isometric embedding ¢ : V. — W the
relation

(p.f) = (fy  holdsin =%(X).

Now we let K and G be two compact Lie groups. Every continuous based
functor F : GT,. — KT, from based G-spaces to based K-spaces gives rise
to a functor

Fo-:GSp — KSp

from orthogonal G-spectra to orthogonal K-spectra by post-composition: if X
is a G-orthogonal spectrum, then the composite

X F
0O — GT. — KT..
is an orthogonal K-spectrum. The next construction is an example of this.

Construction 3.1.15 (Restriction maps). We let « : K — G be a contin-
uous homomorphism between compact Lie groups. Given an orthogonal G-
spectrum X, we apply restriction of scalars level-wise and obtain an orthogonal
K-spectrum a*X. We define the restriction homomorphism

@ X)) — m@X) by @'If] = @)
In other words, the class represented by a based G-map f : SV — X(V) is
sent to the class represented by the K-map

a'(f) : STV = a'(§Y) — ' X(V) = (@' X)(a'V),

appealing to Construction 3.1.13. The restriction maps a* are clearly transitive
(contravariantly functorial) for composition of group homomorphisms.

For g € G the conjugation homomorphism is defined as
g 1 G — G, cg(h) = g 'hg .

For every G-space A, left multiplication by g is then a G-equivariant home-
omorphism l;} i cz(A) — A. For an orthogonal G-spectrum X the maps
lf(v) : (CZ,X)(V) = c;(X(V)) — X(V) assemble into an isomorphism of or-
thogonal G-spectra lg : ¢,X — X, as V runs over all inner product spaces

(with trivial G-action).

Proposition 3.1.16. Let G be a compact Lie group, X an orthogonal G-spectrum
and g € G. Then the two isomorphisms

¢ af(X) — af(c;X)  and (). 1 A X) — x5(X)
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are inverse to each other.

Proof We let V be a G-representation, and we recall that the G-action on
X(V) is diagonally, from the external G-action on X and the internal G-action
on V. Hence the map lz,((v) : c:,(X(V)) — X(V) is the composite of the map
B (cyV) : (i X)(c;V) — X(c;V) and the map X(Iy) : X(c;V) — X(V).
Now we let f : S¥ — X(V) be a G-map representing a class in ng(X).
The following diagram of G-spaces and G-maps commutes because f is G-
equivariant:

(A% L;f * * * l?(c;V) %
§ s E(X(V) = (X)) — = X(}V)
g mw lxup
sV F X(V)

The upper horizontal composite represents the class (lgf )«(cg[f]). Since it dif-
fers from f by conjugation with an equivariant isometry, the upper composite
represents the same class as f, by Proposition 3.1.14 (ii). Thus we conclude

that (%), (cSLfD) = [f1. o

Remark 3.1.17 (Weyl group action on equivariant homotopy groups). We
consider a closed subgroup H of a compact Lie group G and an orthogo-
nal G-spectrum X. Every g € G gives rise to a conjugation homomorphism
cg + H — HE® by c,(h) = g 'hg, where H® = {g"'hg | h € H} is the
conjugate subgroup. One should beware that while cz(resgg (X)) and resZ(X)
have the same underlying orthogonal spectrum, they come with different H-
actions. However, left translation by g is an isomorphism of orthogonal H-
spectra lg : cgX — X. So combining the restriction map along ¢, with the
effect of l? gives an isomorphism

. (co) -
g 1 1y (X) — #(c}X) — i (X). (3.1.18)

Moreover,

gx 08y = (lg)* o(cg) o (l?/)* o(cg) = (1?)* ° ((Cg)*(lgf/))* 0 (cg) o (cg)”
= (lg ° (Cg)*(lg))* o(cgocy)” = (li'(g’)* o (ceg)” = (88"«

by naturality of (c,)*. If g normalizes H, then g, is a self-map of the group
ng (X). If moreover g belongs to H, then g, is the identity by Proposition
3.1.16; so the maps g, define an action of the Weyl group WgH = NgH/H
on the equivariant homotopy group ng X).

If H has finite index in its normalizer, this is the end of the story concerning
Weyl group actions on nOH (X). In general, however the group H need not have
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finite index in its normalizer Ng H, and the Weyl group Wi H may have positive
dimension, and hence a non-trivial identity path component (WsH)°. We will
now show that the entire identity path component acts trivially on 71(’)’ (X) for
any orthogonal G-spectrum X. This is a consequence of the fact that every
element of (WsH)® has the form zH for an element z in (CgH)°, the identity
component of the centralizer of H in G, compare Proposition A.26. But then
¢; : H — H is the identity because z centralizes H. On the other hand, any
path from z and 1 in CgH induces a homotopy of morphisms of orthogonal
H-spectra from [, : X — X to the identity of X. So

Ze = (K)ol = Tduy, -

This shows that the identity component of the Weyl group W H acts trivially
on nOH (X). So the Weyl group action factors over an action of the discrete group

no(WgH) = (WgH)/(WH)® .

Construction 3.1.19. If A is a pointed G-space, then smashing with A and
taking based maps out of A are two continuous based endofunctors on the
category of based G-spaces. So for every orthogonal G-spectrum X, we can
define two new orthogonal G-spectra X A A and map, (A, X) by smashing with
A (and letting G act diagonally) or taking based maps from A level-wise (and
letting G act by conjugation). More explicitly, we have

XANA(V) = X(V)ANA and map, (A, X)(V) = map,(A, X(V))

for an inner product space V. The structure maps and actions of the orthogonal
groups do not interact with A: the group O(V) acts through its action on X(V),
and the structure maps are given by the composite

oywAA

SYAXAADW) = SYAXWIAA — X(VOW)AA = (XAAVeW)

and by the composite

v v map, (A,ovw)
S" Amap, (A, X(W)) — map,(A,S " AX(W)) ————— map, (A, X(VeW))
where the first is an assembly map that sends v A f to the map sending a € A
tov A f(a).

Just as the functors — A A and map, (A, —) are adjoint on the level of based
G-spaces, the two functors just introduced are an adjoint pair on the level of
orthogonal G-spectra. The adjunction

GSp(X,map,(A,Y)) — GSp(X AA,Y) (3.1.20)

takes a morphism f : X — map, (A, Y) to the morphism f* : XA A — Y
whose Vth level f/(V) : X(V) AA — Y(V)is f2(V)(x A a) = f(V)(x)(a).
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An important special case of this construction is when A = SV is a rep-
resentation sphere, i.e., the one-point compactification of an orthogonal G-
representation. The Wth suspension X A SV is defined by

XASMW) = X(V)ASY,

the smash product of the Vth level of X with the sphere S%. The Wth loop
spectrum QX = map,(S", X), defined by

@x)(v) = QVX(V) = map,(S",X(V)),

the based mapping space from S " to the Vth level of X. We obtain an adjunc-
tion between — A S" and Q" as the special case A = SV of (3.1.20).

Construction 3.1.21 (Shift of an orthogonal spectrum). We introduce a spec-
trum analog of the additive shift of orthogonal spaces defined in Example
1.1.11. We let V be an inner product space and denote by

-V .0 — O

the continuous functor given on objects by orthogonal direct sum with V, and
on morphism spaces by

OoU, W) — OUsV,WeV), W — (w,0),p8V).
The Vth shift of an orthogonal spectrum X is the composite
sh"X = Xo(-aV). (3.1.22)
In other words, the value of sh” X at an inner product space U is
(sh" X)(U) = X(UaV).

The orthogonal group O(U) acts through the monomorphism -V : O(U) —
O(U @ V). The structure map o-?}“‘;,x of sh" X is the structure map o7y .01, Of X.

Since composition of functors is associative, the shift construction com-
mutes on the nose with all constructions on orthogonal spectra that are given
by post-composition with a continuous based functor as in Construction 3.1.19.
This applies in particular to smashing with and taking mapping space from a
based space A, i.e.,

(sh" X)AA = sh¥(X AA) and map,(A,sh¥ X) = sh”(map,(4, X)) .

So we can — and will — omit the parentheses in expressions such as sh” X A A.
The shift construction is also transitive in the following sense. The values of
sh”(sh" X) and sh"®V X at an inner product space U are given by

(shVshY X)U) = X(U e V)a W)
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and
sh"®*VX)(U) = XU (Ve W)).
We use the effect of X on the associativity isomorphism
UaV)eW =Uas VoW, ((uv),w) — @ (v,w)

to identify these two spaces; then we abuse notation and write

sh’(sh" X) = sh"®" x .

The suspension and the shift of an orthogonal spectrum X are related by a

natural morphism

Ay XASY — shVX. (3.1.23)
In level U, this is defined as Ay (U) = o7}y, the opposite structure map (3.1.5),

i.e., the composite

is 4 X(tvu)
XWHASY 25 sV axU) 2 x(veU) —% x(UaV) = (sh¥ X)(U) .
In the special case V = R we abbreviate /1]5 to Ay : XAS! — sh X. The A-maps
are transitive in the sense that for another inner product space W, the morphism
/l;@W coincides with the two composites in the commutative diagram:

/lW
xnasV

XASVEW =5 X ASVASY sh" X A SV
/l)‘é/\SW L/l:;wx
shY XA SY ———— = sh"(sh" X) =——=sh"*" x
sh¥ ()

Now we let G be a compact Lie group, V a G-representation and X an or-
thogonal G-spectrum. Then the orthogonal spectra X A §" and sh" X become
orthogonal G-spectra by letting G act diagonally on X and V. With respect
to these diagonal actions, the morphism A,‘? : XASY — sh” X is a mor-
phism of orthogonal G-spectra. Our next aim is to show that /lX is in fact a
7 -isomorphism. We define a homomorphism

wy + 196shVX) — 29xasY) (3.1.24)
by sending the class represented by a G-map
f i SV Xx(UeR"@V) = (sh’ X)(U®RY)

to the class represented by the composite

wik SUAT puek - FASY
SU@V@R k VR SUQBR Y% ———>X(U®Rn ® V) /\Sv

X(Uetpn y)ASY v
— S X{UaVeRHYASY.
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We omit the straightforward verification that this assignment is compatible
with stabilization, and hence well-defined. The map :,l/; is natural for mor-
phisms of orthogonal G-spectra in X. Finally, we define

ey : aY(XASY) — X ASY)
as the effect of the involution

XAST o xASY — xASY
induced by the ‘negative’ map of V.

Proposition 3.1.25. Let G be a compact Lie group, X an orthogonal G-spectrum
and V a G-representation.

(i) For every integer k, each of the three composites around the triangle

G 14 - G(hV
T (XASY) m;(sh” X)
\ e
nkG(X ASY)
is the respective identity.
(i1) The morphism
Ay XASY — shV X,  itsadjoint Ay X — QVshV X,

the adjunction unit n)‘? : X — QX ASY) and the adjunction counit
6}‘(/ 1 (QYX) A SV — X are rt_-isomorphisms of orthogonal G-spectra.

Proof We introduce an auxiliary functor 7(A; —) from orthogonal G-spectra
to abelian groups that generalizes equivariant homotopy groups and depends
on a based G-space A. We set

7%(A; X) = colimyeyq [SY A A, XU,

where the colimit is taken over the analogous stabilization maps as for ng; the
set 7%(A; X) comes with a natural abelian group structure by the same rea-
soning as for ﬂg(X). Then 7%(S*; X) is naturally isomorphic to ﬂkG(X); more
generally, for a G-representation W, the adjunction bijections

[SU/\SR,(Q;W,X(U)]G ~ [SUQBR](’QWX(U)]G

assemble into a natural isomorphism of abelian groups between 7 (S RioW, X)
and 77 (Q"X).
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The definition of the map lﬁ; has a straightforward generalization to a natural
homomorphism

vy @ n%A;sh" X) — 794X ASY)
by sending the class represented by a G-map
f:SYAA — X(WUeV) = (sh” X)(U)

to the class represented by the composite

Unt

S 5V .A ‘ASY
SUV a4 25 qU i ansY I xwevyasY.

We omit the straightforward verification that this assignment is compatible
with stabilization, and hence well-defined. We claim that each of the three
composites around the triangle

(AP
%A X ASY) a 7%(A;shY X)

%A X ASY)

is the respective identity. We consider a based continuous G-map f : SU A
A — X(U) A SV that represents a class in 7°(A; X A SV). Then the class
ey Wy ((Ay).(f))) is represented by the composite

op L\ o—ldy
Tuyv

.
SUYaA = SUAAASY 25 xyas asY T xWev)asY .

IR

The map V& (-1dy) : VeV — V @ V is homotopic, through G-equivariant
linear isometries, to the twist map tyy : V@&V — V & V that interchanges
the two summands. So sv(w;((/l;)*( f))) is also represented by the left vertical
composite in the following diagram of based continuous G-maps:

TyyAA

SUASVAA SYASUAA
SUATASVl
SUANAASY
fASVl
X(W)ASY ASY

TxwynsV sV
X(U)Atvy

X(U)ASVAS‘/#SV/\X(U)/\SV
TxansVASY
s’ | rons”

XUeWASY —— = X(VoU)ASY
X(ryy)ASY

SYAS
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The right vertical composite (oyy A S V) o (SV A f) is the stabilization of f, so
it represents the same class in 79(A; X A SY). Since the left and right vertical
composites differ by conjugation with an equivariant isometry, they also rep-
resent the same class in 7°(4; X A SV), by Proposition 3.1.14 (ii). Altogether
this shows that the composite &y o ¢y o (dy), is the identity. Since &}, is the
identity, this also implies that the composite ¢/}, o (1y). o &y is the identity.

The remaining case is similar. We consider a based continuous G-map g :
SUANA — X(U @ V) = (sh” X)(U) that represents a class in 7°(A;sh" X).
Then the class (1}).(sv(¥(g))) is represented by the composite

SUAT sV
SUASYAA 2 sUaansY 2225 xWev)asY

X(UaV)AS 1
XU T xUeV)ASY

op
Tuevy

— X(UsVeV) = sh"X)UaV).
Since
Ty XU SVIAS™) = XUeVe(-1d)ooy,,,

and Vo (-Idy) : VeV — V & V is G-homotopic to the twist Ty, the
class (/l)‘?)*(sv(w)‘?(g))) is also represented by the left vertical composite in the
following diagram:

TyyAA
SUASYAA ot SYASUAA
SUATSV,A\L
SUANAASY
gnsV SVAg
XUaV)ASY
op TxwnsV.sV
Tuevy \
XUsVaV) SVYAX(UaYV)
X(Ustyy) Tvuev
XU @HV eV) ST XU GBHV aV)
sh" XU e V) (sh" X\)(U s V)
sh” X)(tyv)

The right vertical composite oy ey © (SY A g) is the stabilization of g, so
it represents the same class in 7¢(A; shY X). Since the left and right vertical
composites differ by conjugation with an equivariant isometry, they represent
the same class, so the composite (1y). o &y o ¢y, is the identity.
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Now we prove claim (i) of the proposition. For k > 0, it is the special case
A = S* of the discussion above. To deduce the claim for negative dimensional
homotopy groups we use the isomorphism of orthogonal G-spectra

Ty © sh*(sh” X) = sh"(sh* X) (3.1.26)
whose value at an inner product space U is the map
X(U®teey) : XUBR @V) = XU VR,
Then the following diagram commutes:

(A9)« voury

A (X ASY) 7, (sh’ X) —— > 70 (X A S")
7§ (sh*(sh” X))
(Tk,V)*l/E
nS(sh* X A SY) — 7S (sh” (sh* X)) o nS(sh* X A SY)
Ey o

shk x”* shk x

So the claim in dimension —k for the orthogonal G-spectrum X is a conse-
quence of the previously established claim in dimension 0O for the orthogonal
G-spectrum sh* X.

(ii) We start with the morphism 1Y, which can be treated fairly directly. We
discuss the case k > 0 and leave the analogous argument for k < O to the reader.
We define a map in the opposite direction

K ad@Vsh" X) — 7%(X).

Weletg: S UeR' __, QXU & V) = (QVsh” X)(U) represent a class of the
left-hand side. The map « sends [g] to the class represented by the composite
g UaVer: SUA—>TVN 5 UsRey —gb—> XUeaV),

where g is the adjoint of g. This is compatible with stabilization.

We claim that the map « is injective. Indeed, if g : SV — QVX(U @ V)
represents an element in the kernel of «, then after increasing U, if necessary,
the composite g’ o (SU A Tygre) is G-equivariantly null-homotopic. But then g,
and hence also its adjoint g, are equivariantly null-homotopic. So « is injective.

The composite « o (1)), sends the class of a G-map f : S UeR _, X(U) to
the class of the composite

SYAT gk Yo f)

g UeVeR: gUeRtev X XUaV). (3.1.27)
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The adjoint (17 (U) o f)" coincides with the composite

op

[on
svertev. I vy asv I xwev),

so the composite (3.1.27) represents the same class as f. This proves that x o
(/lV)* is the identity. Since « is also injective, the map (/l )« 1s bijective.

If H is a closed subgroup of G we apply the previous argument to the under-
lying H-representation of V to conclude that ;lV induces an isomorphism on
7. So (/l )« is a r_-isomorphism of orthogonal G-spectra.

Now we treat the morphism /lV. Again we show a more general statement,
namely that for every pair of G—representations V and W the morphism

Qvay) : Q"xasY) — Q¥(shV X)
is a 7r_-isomorphism of orthogonal G-spectra. We start with the effect on G-
equivariant homotopy groups. For k& > 0 this follows by applying part (i) with
A = S®®W and exploiting the natural isomorphism re@QYY) = 2%(S ReW. yy,
To get the same conclusion for negative dimensional homotopy groups we ex-

ploit the fact that 7% (Y) = nOG(shk Y), by definition. Moreover, the following
diagram commutes

QY (X A SY)) =——=rG( Q" X A S"))
| e, »
9 (@Y (1Y) 7$(QY (sh" (sh* X))
= Tng(gwrw)
7%, (@Y (sh" X)) 5(Q" (sh(sh” X))

where the isomorphism 7y was defined in (3.1.26). So the previous argu-
ment applied to the spectrum sh® X shows that the morphism QW(/l)‘g) also
induces isomorphisms on G-equivariant homotopy groups in negative dimen-
sions. If H is any closed subgroup of G, then we consider the underlying H-
representations of V and W and conclude that the morphism QW(AX) induces
isomorphisms on 7. This proves that Q¥ (1y) is a rr_-isomorphism of orthog-
onal G-spectra. The special case W = 0 proves that /l; is a r_-isomorphism.

The morphism ;lV factors as the composite

V V
X 2 Q'xAsY) 20 GV x

Since both A}, and QY (4y) are &, -isomorphisms of orthogonal G-spectra, so is
the adjunction unit .

Finally, we treat the adjunction counit e)‘(/ . The two homomorphisms of or-
thogonal G-spectra

QYY) , Ay QX — QY(Q"sh" X)
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are not the same; they differ by the involution on the target that interchanges
the two V-loop coordinates. An equivariant homotopy of linear isometries from
Ty : VeV — V& Vto(—1d) & Id thus induces an equivariant homotopy
between the morphism QY (1}) and the composite

v

Vx5, QUi gt x) STt

QV( QY shV X) .
Passing to adjoints shows that the square of morphisms of orthogonal G-spectra

X

Q"xX)ASY X
o) |
sh” QVx = sh” QVx

sh¥ map, (S ~14,X)

commutes up to G-equivariant homotopy. Since the two vertical morphisms
are & -isomorphisms, and the lower horizontal one is even an isomorphism,
we conclude that ey is a 7,-isomorphism. O

Now we recall some important properties of equivariant homotopy groups,
such as stability under suspension and looping, and the long exact sequences
associated with mapping cones and homotopy fibers. We define the loop iso-
morphism

a: aQx) — 7%, (X). (3.1.28)

We represent a given class in #{(QX) by a based G-map f : § VeR™t __,
QX(VeR") and let £ : §VEE™" _ X(V@®R") denote the adjoint of f, which
represents an element of an (X). Then we set a[f] = [f*].

Next we define the suspension isomorphism

-ASt i) — Al (X ASY. (3.1.29)

We represent a given class in 7rkG(X) by a based G-map f : S veR™t __, X(Ve
R™); then fAS! : SVER"™! 5 X(VOR")AS ! represents a class in 7 (XASH,
andweset [fIAS! = [fAS!'].

Proposition 3.1.30. Let G be a compact Lie group, X an orthogonal G-spectrum
and k an integer. Then the loop isomorphism (3.1.28) and the suspension iso-
morphism (3.1.29) are isomorphisms of abelian groups.

Proof The inverse to the loop map (3.1.28) is given by sending the class
of a G-map S VeR™ ! __, X(V @ R") to the class of its adjoint S veR™ __,
QX(VaeR"). The suspension homomorphism is the composite of the two maps

79 (X) LN 74Q(X A SY) % 7 (X ASY;
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since (nx). is an isomorphism by Proposition 3.1.25 (ii), so is the suspension
isomorphism. O

A key feature that distinguishes stable from unstable equivariant homotopy
theory — and at the same time an important calculational tool — is the fact
that mapping cones give rise to long exact sequences of equivariant homotopy
groups. Our next aim is to establish this long exact sequence, see Proposition
3.1.36.

Construction 3.1.31 (Mapping cone and homotopy fiber). The reduced map-
ping cone Cf of a morphism of based spaces f : A — B is defined by

Cf = (AA[0,1))U; B.

Here the unit interval [0, 1] is pointed by 0, so that A A [0, 1] is the reduced
cone of A. The mapping cone comes with an embedding i : B — Cf and a
projection p : Cf — A A S'; the projection sends B to the basepoint and is
given on A A [0, 1] by p(a, x) = a A H(x), where

2x -1
x(1-x)°

t 0,11 — S'  isdefinedas  #(x) = (3.1.32)
What is relevant about the map ¢ is not the precise formula, but that it passes to
a homeomorphism between the quotient space [0, 1]/{0, 1} and S' = R U {co},
and that it satisfies #(1 — x) = —#(x).

The mapping cone Cf of a morphism f : X — Y of orthogonal G-spectra
is now defined level-wise by

CHIV) = Cf(V) = XV)AL0,1]) Ugw) Y(V) ,

the reduced mapping cone of f(V) : X(V) — Y (V). The groups G and O(V)
act on (Cf)(V) through the given action on X(V) and Y (V) and trivially on
the interval. The embeddings i(V) : Y(V) — C(f(V)) and projections p(V) :
C(f(V)) — X(V) A S assemble into morphisms of orthogonal G-spectra

i:Y —Cf and p:Cf— XAS'. (3.1.33)

We define a connecting homomorphism 8 : ¢ (Cf) — n¢(X) as the com-
posite

”fn (P)

—AS!
20 (Cf) =5 78 (xASY) s 2%, (3.1.34)

the effect of the projection p : Cf — X A S! on homotopy groups, followed
by the inverse of the suspension isomorphism (3.1.29).

The homotopy fiber is the construction ‘dual’ to the mapping cone. The ho-
motopy fiber of a continuous map f : A — B of based spaces is the fiber
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product
F(f) = #+xp B®xp A = {(1,a) € B"Y x A 20) = %, A1) = f(a)},

i.e., the space of paths in B starting at the basepoint and equipped with a lift
of the endpoint to A. As basepoint of the homotopy fiber we take the pair
consisting of the constant path at the basepoint of B and the basepoint of A.
The homotopy fiber comes with maps

QB 5 F(f) AL

The map p is the projection to the second factor; the value of the map i on a
based loop w : S! — Bis

i(w)=(wot,x*),

where 7 : [0,1] — S was defined in (3.1.32).
The homotopy fiber F(f) of a morphism f : X — Y of orthogonal G-
spectra is the orthogonal G-spectrum defined by

F(HV) = F(f(V),

the homotopy fiber of f(V) : X(V) — Y(V). The groups G and O(V) act
on F(f)(V) through the given action on X(V) and Y(V) and trivially on the
interval. Put another way, the homotopy fiber is the pullback in the cartesian
square of orthogonal G-spectra:

E(f) X

T

yon____ S yxy
A5 (A0),A(1)

The inclusions i(V) : QY (V) — F(f(V)) and projections p(V) : F(f(V)) —
X(V) assemble into morphisms of orthogonal G-spectra

i: QY — F(f) and p: F(f) — X.

We define a connecting homomorphism 0 : 7TkG+] ) — JTkG(F (f)) as the com-
posite

-1 7g (i)
7l (Y) = nf(QY) —— nl(F(f),
where the first map is the inverse of the loop isomorphism (3.1.28).

The proof of exactness for the mapping cone sequence will need some ele-
mentary homotopies that we spell out in the next proposition.

Proposition 3.1.35. Let G be a topological group.
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(i) For every continuous based map f : A — B of based G-spaces the
composites

AalsLhcr aada  FHals

are naturally based G-null-homotopic. Moreover, the diagram

CAU; CB
AAS! BAS!
AT

commutes up to natural, based G-homotopy, where 7 is the sign involu-
tion of S' given by x — —x.

(i1) For every based G-space Z the map pz; U x : CZ Uz CZ — Z A S1
which collapses the second cone is a based G-homotopy equivalence.

(iii) Let f : A — Band B : Z — B be morphisms of based G-spaces such
that the composite iy : Z — Cf is equivariantly null-homotopic. Then
there exists a based G-map h : ZAS' — AAS" such that (f AS')oh :
ZAS' — BAS!is equivariantly homotopic to f A S .

Proof (i) We specify natural G-homotopies by explicit formulas. The map
if : A — Cf is null-homotopic by A X [0, 1] — Cf,(a, s) — (a, s), i.e., the
composite of the canonical maps AX [0, 1] — AA[0,1]and AA[O, 1] — Cf.
The map fp : F(f) — B is null-homotopic by F(f)x[0,1] — B,(1,a, s) —
A(s).

The homotopy for the triangle will be glued together from two pieces. We
define a based homotopy H : CA x [0,1] — B A S! by the formula

H(a,s,u) = fla) ANt2—s—u)

which is to be interpreted as the basepoint if 2 — s — u > 1. Another based

homotopy H' : CB x [0,1] — B A S! is given by the formula
H'(b,s,u) = bAt(s—u),

where ¢ : [0, 1] — S was defined in (3.1.32). This formula is to be interpreted
as the basepoint if s < u. The two homotopies are compatible in the sense that

H(a,l,u) = fla) At(1 —u) = H'(f(a), l,u),
foralla € Aand u € [0, 1]. So H and H’ glue and yield a homotopy
(CA U CB)x [0, 1] = (CAX[0, 1]) Upio,y) (CBX [0,1]) Z25 BAS' .

For u = 0 this homotopy starts with the map * U pp, and it ends for u = 1 with
the map (f A 7)o (pa U *).
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(i1) Since the functor Z A — is a left adjoint and Z A {0, 1} = Z X 1, the
space CZU;xz CZ is homeomorphic to the smash product of Z and the pushout
[0,1] Uio,1 [0, 1]. This identification

CZ Uy CZ = ZA([0,1] U [0, 1])
turns the map p; into the map
ZA@U=) : ZA([0,1]U01 [0,1]) — ZAS'.

So the claim follows from the fact that the map U = : [0, 1] Ujo,1; [0, 1] — S!
is a based homotopy equivalence.

(iii) Let H : CZ = Z A [0,1] — Cf be a based, equivariant null-homotopy
of the composite i : Z — Cf, i.e., H(z,1) = i(B(z)) for all z € Z. The
composite pyH : CZ — A A S! then factors as pyH = hp; for a unique
G-maph:ZAS' — AAS'. We claim that 4 has the required property.

To prove the claim we need the G-homotopy equivalence pz U * : CZ Uz
CZ — Z A S' which collapses the second cone. We obtain a sequence of
equalities and G-homotopies

(fASHoho(pzUx) = (FASY) o (paUs)o(HUCEH)
(BAT)o(fAT)0o(paUx)o(HUCB))
(BAT)o(xU pp)o(HUC(B))
(BAT) o (BAS") o (xUpy)
BASHYo(ZAT)o(xUpz) = (BAS")o(pzUx)
Here HUC(B) : CZUxz CZ — Cf Up CB = CA Uy CB and 7 is the sign
involution of S!. The two homotopies result from part (i) applied to f and to
the identity of Z, and we used the naturality of various constructions. Since the

map pzUx is a G-homotopy equivalence by part (ii), this proves that (fAS ')oh
is G-homotopic to S A S O

12

Now we are ready to prove the long exact homotopy group sequences for
mapping cones and homotopy fibers.

Proposition 3.1.36. For every compact Lie group G and every morphism f :
X — Y of orthogonal G-spectra the long sequences of equivariant homotopy
groups

9(f) G (i)
C— 10 (C) —2 29X 2 20 25 AScp) —
and
k( ) 7 (f)
C— 20, — 2OF() 5 29X 2 28y — -

are exact.
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Proof We start with exactness of the first sequence at ﬂkG(Y). The composite
of f: X — Y and the inclusion i : Y — Cf is equivariantly null-homotopic,
so it induces the trivial map on 7TkG. It remains to show that every element in the
kernel of 7¥ (i) : 2¥(Y) — #(Cf) 