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Exercises for Topology I
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You can obtain up to 10 points per exercise (plus bonus points, where applicable).

This is the last exercise sheet counting towards admission for the final exam.

Definition. Let
(
(Xi, xi)

)
i∈I

be a family of based spaces. The wedge sum
∨

i∈I Xi is the space obtained

from the topological disjoint union
∐

i∈I Xi by collapsing the subspace
∐

i∈I{xi} to a single point.

Exercise 1. 1. Let (Xi)i∈I be a family of CW-complexes and pick for each Xi a zero-cell xi ∈ Xi as
basepoint. Show that for every abelian group A and every n > 0 the map⊕

i∈I

Hn(Xi, A) → Hn

(∨
i∈I

Xi, A
)

induced by the inclusions Xi →
∨

i∈I Xi is an isomorphism.

2. Show that the analogous map ⊕
i∈I

H0(Xi, A) → H0

(∨
i∈I

Xi, A
)

is surjective and determine its kernel.

Exercise 2. Let (X,x) be a based space.

1. Write i : ∇1 → [0, 1] for the homeomorphism (t, 1 − t) 7→ t. Show that the map π1(X,x) → H1(X,Z)
sending the class of a loop γ : ([0, 1], {0, 1}) → (X,x) to the homology class of [γ ◦ i] is well-defined and
a group homomorphism.

2. Let f1, . . . , fn : ∇1 → X be continuous maps with fi(0, 1) = fi+1(1, 0) for i = 1, . . . , n − 1. We define
f : ∇1 → X via f(1 − t, t) = fi(i − nt, nt − i + 1) for t ∈ [(i − 1)/n, i/n]. Show that the formal sum
f1 + · · ·+ fn in C(X,Z)1 is homologous to f (i.e. the difference between the two is a boundary).

3. Assume now that X is path-connected and choose for every y ∈ X a path ωy : [0, 1] → X from the
basepoint x to y. For every singular 1-simplex f : ∇1 → X we consider the loop h(f) at x given by

ωf(0,1) ∗ (f ◦ i−1) ∗ ωf(1,0)

where ∗ denotes concatenation and γ denotes the reversal of a path γ.

Show that f 7→ h(f) descends to a group homomorphism h : H1(X,Z) → π1(X,x)ab into the abelian-
ization of π1(X,x) (i.e. the quotient by the commutator subgroup).

4. Show that the homomorphism π1(X,x) → H1(X,Z) from Part 1 descends to π1(X,x)ab and that the
resulting homomorphism is inverse to the homomorphism h. (In particular, the first homology group
of a path-connected space is isomorphic to the abelianization of its fundamental group with respect to
an arbitrary basepoint.)
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Exercise 3. Let k ∈ Z and define τk : S
1 → S1, z 7→ zk. Show that for every abelian group A the map

τk∗ : H1(S
1, A) → H1(S

1, A) is multiplication by k. (In particular, τk has degree k.)

Hint. First prove the statement for k = 0, 1 and then apply an ‘additivity’ argument with respect to the
multiplication in π1.

Exercise 4. Let k ∈ Z and let Mk be the space obtained from S1 by attaching a 2-cell via the map τk from
the previous exercise. Compute the homology groups H∗(Mk, A) for every abelian group A.

∗Exercise 5 (10 bonus points). Let

0 → A1 → A2 → A3 → 0 and 0 → A3 → A4 → A5 → 0

be short exact sequences of abelian groups. By an exercise from the previous sheet, these induce Bockstein
homomorphisms

β : Hn+1(X,A3) → Hn(X,A1) and β′ : Hn+1(X,A5) → Hn(X,A3)

for every n ≥ 0. Prove that the composite

Hn+1(X,A5)
β′

−−→ Hn(X,A3)
β−−→ Hn−1(X,A1)

is the zero map. (In particular, the Z/p-homology groups of any topological space assemble into a chain
complex again with differential given by the Bockstein homomorphisms for 0 → Z/p → Z/p2 → Z/p → 0.)
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