Michael B. Rothgang (he/him)

Symplectic geometry group Humboldt-Universität zu Berlin

Introduction

BMS Student Conference 2023 February 22, 2023

Three motivating questions

Question 1: dynamical systems

What can we say about periodic orbits of a mechanical system (e.g. double pendulum, the solar system)?

Sample results

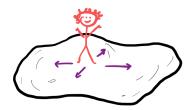
Question 2: symplectic fillings

When is a smooth manifold the boundary of a compact manifold?

Question 3: moduli spaces

What does the solution space to an elliptic PDE look like?

Manifolds



Manifolds

Introduction O•

surface of a potato is a manifold: locally looks like a disk

Manifolds

surface of a potato is a manifold: locally looks like a disk

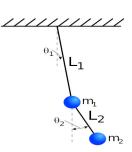
smooth manifold: second countable Hausdorff topological space M locally diffeomorphic to open ball in \mathbb{R}^n

Motivation: Hamiltonian mechanics



The solar system (simplified).

Source: http://www.scienceclarified.com/ photos/solar-system-2865.jpg



A double pendulum.

Source: By JabberWok, CC BY-SA 3.0, https://commons.wikimedia.org/w/index. php?curid=1601029

Hamiltonian systems: from Newton's to Hamilton's equations

system of particles moving with n degrees of freedom

$$q(t)=(q_1(t),\ldots q_n(t))$$

- forces are derived from a **potential** V(q) by $F(q) = -\nabla V(q)$
- Newton's second law states $m_i \ddot{q}_j = -\frac{\partial V}{\partial a_i}$

Hamiltonian systems: from Newton's to Hamilton's equations

system of particles moving with n degrees of freedom

$$q(t)=(q_1(t),\ldots q_n(t))$$

- forces are derived from a **potential** V(q) by $F(q) = -\nabla V(q)$
- Newton's second law states $m_i \ddot{q}_j = -rac{\partial V}{\partial q_j}$
- Hamilton: consider momenta $p_j := m_j \dot{q}_j$
- total energy defines the Hamiltonian function

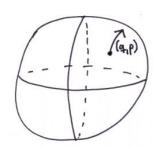
$$H \colon \mathbb{R}^{2n} \to \mathbb{R}, \quad (q,p) \mapsto \sum_{j=1}^{n} \frac{p_j^2}{2m_j} + \underbrace{V(q)}_{\text{potential forces}}$$

Newton's equations become Hamilton's equations

$$\dot{q}_j = rac{\partial H}{\partial p_j}$$
 and $\dot{p}_j = -rac{\partial H}{\partial q_j}$, for $j = 1, \dots n$ (H)

Sample results

- key insight: regard (q(t), p(t)) as trajectory in phase space $\mathbb{R}^{2n} = T^* \mathbb{R}^n$
- double pendulum: rigid arms mean $q(t) = (q_1(t), q_2(t)) \in \mathbb{T}^2$ phase space is cotangent bundle $T^*\mathbb{T}^2$
- for systems with constraints, treat (q, p)as local coordinates of a point moving in a manifold



Fact

A smooth 2*n*-dimensional manifold is **symplectic** iff it is covered by coordinate charts $(q_1, p_1, \dots, q_n, p_n)$ such that for all smooth $H: M \to \mathbb{R}$, all coordinate changes preserve the form of (H).

Hamilton's equation in symplectic manifolds

Definition

For (M, ω) symplectic, $H: \mathbb{R} \times M \to \mathbb{R}$ smooth, the **Hamiltonian vector field** X_{H_t} of H is defined by $\omega(X_{H_t}, \cdot) = -dH(t, \cdot)$.

Sample results

Exercise

Solutions (q, p) of (H) are the integral curves of X_{H_*} .

Sample results

Arnold conjecture

If M is a closed* symplectic manifold and $H: \mathbb{S}^1 \times M \to \mathbb{R}$ smooth and non-degenerate, then

1-periodic orbits of
$$X_H \ge \sum_{i=1}^n b_i(M)$$
,

where $b_i(M) := \operatorname{rk} H_i(M)$ is the *i*-th Betti number of M.

(Almost the) Conley conjecture

M is a closed symplectic manifold with e.g. $\pi_2(M) = 0$ $H: \mathbb{S}^1 \times M \to \mathbb{R}$ is smooth and non-degenerate. then X_H has infinitely many simple orbits of integer period.

Sample theorems II: symplectic fillings

Definition

A **smooth filling** of a smooth manifold M is a compact manifold N with $\partial N \cong M$.

not always possible (\mathbb{CP}^2 has no smooth filling), but well understood (bordism theory, 1960s)

Sample theorems II: symplectic fillings

Definition

A **smooth filling** of a smooth manifold M is a compact manifold N with $\partial N \cong M$.

not always possible (\mathbb{CP}^2 has no smooth filling), but well understood (bordism theory, 1960s)

Definition

A **contact manifold** $(M^{2n-1}, \xi = \ker \alpha)$ is a smooth manifold M together with a choice of 1-form α s.t. $\alpha \wedge d\alpha^{n-1} \neq 0$.

Template definition

A symplectic filling of (M, ξ) is a compact symplectic manifold (W, ω) with $\partial W \cong (M, \xi)$.

Sample theorem II: symplectic fillings (cont.)

Template definition

A symplectic filling of (M, ξ) is a compact symplectic manifold (W, ω) with $\partial W \cong (M, \xi)$.

Definition

An **exact symplectic filling** of (M, ξ) is a compact symplectic manifold $(W, \omega = d\lambda)$ s.t. $\partial W \cong (M, \xi)$ and the vector field X induced by $\iota_X \omega = \lambda$ points outwards along ∂W .

Theorem (Zhou '20+'22)

If $n \geq 3$ and $n \neq 4$, $(\mathbb{RP}^{2n-1}, \xi_{std})$ has no exact symplectic filling.

Introduction

• Arnold, Conley conjecture: use Hamiltonian Floer homology

- (M, ω) symplectic \rightarrow homology groups $HF_*(M)$, generated by 1-periodic Hamiltonian orbits
- Arnold conjecture: bound # orbits via rk $HF_*(M)$
- Conley conjecture: pass to higher iterates
- Zhou's theorem: use more advanced invariant to exclude hypothetical filling (action-filtered positive symplectic homology)

Pseudo-holomorphic curves

Definition

An almost complex structure on a smooth manifold M is a collection of maps $J_p: T_pM \to T_pM$ with $J_p^2 = -id$, smoothly varying in p.

Sample results

$\mathsf{Theorem}$

Every symplectic manifold admits an almost complex structure.

intuition: J is an auxiliary object

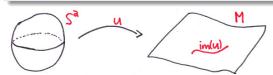
Pseudo-holomorphic curves

Definition

A **Riemann surface** is a smooth surface with a choice of almost complex structure.

Definition

A closed **pseudo-holomorphic curve** is a smooth map $u: (\Sigma, j) \to (M, J)$ with $J \circ du = du \circ j$, where (Σ, j) is a closed Riemann surface and (M, J) an almost complex manifold.



Moduli space of holomorphic curves

 (M,ω) symplectic, almost complex structure J on M, genus g > 0 and homology class $A \in H_2(M)$ consider the **moduli space** of holomorphic curves

$$\mathcal{M}_{g}(A,J):=\{u\colon (\Sigma,j) o (M,J)\mid \text{ u ps.-holo}; \Sigma\cong \Sigma_{g}, u_{*}[\Sigma]=A\}/_{\sim}$$

Sample results

Wishful thinking

 $\mathcal{M}_{\sigma}(A, J)$ is a compact smooth manifold (and finite-dimensional).

Understanding the moduli space of holomorphic curves

Sample results

Wishful thinking

 $\mathcal{M}_{\sigma}(A, J)$ is a compact smooth manifold (and finite-dimensional).

• $u: (\Sigma, j) \to (M, J)$ is J-holomorphic iff $du + J \circ du \circ j = 0$ i.e. $\mathcal{M}_{g}(A, J)$ is the zero set of $\Phi: (u, J) \mapsto du + J \circ du \circ j$

Understanding the moduli space of holomorphic curves

Wishful thinking

 $\mathcal{M}_g(A,J)$ is a compact smooth manifold (and finite-dimensional).

• $u: (\Sigma, j) \to (M, J)$ is J-holomorphic iff $du + J \circ du \circ j = 0$ i.e. $\mathcal{M}_g(A, J)$ is the zero set of $\Phi: (u, J) \mapsto du + J \circ du \circ j$

Finite-dimensional Implicit function theorem

 $E \to B$ smooth vector bundle, $s \colon B \to E$ smooth section transverse to the zero section. Then $s^{-1}(0) \subset B$ is a smooth submanifold.

domain of Φ is $C^{\infty}(\Sigma, M) \times \mathcal{J}(M, \omega)$, where $\mathcal{J}(M, \omega)$ is the space of all compatible almost complex structures

Introduction

$$\mathcal{M}_g(A,J)$$
 is the zero set of $\Phi \colon C^{\infty}(\Sigma,M) \times \mathcal{J}(M,\omega) \to \ldots$, $(u,J) \mapsto du + J \circ du \circ j$

linearisation of section must have a bounded right inverse: ok, $d\Phi$ is a **Fredholm operator**

Infinite-dimensional complications

```
\mathcal{M}_{\mathfrak{G}}(A,J) is the zero set of \Phi \colon C^{\infty}(\Sigma,M) \times \mathcal{J}(M,\omega) \to \ldots
(u, J) \mapsto du + J \circ du \circ j
```

linearisation of section must have a bounded right inverse: ok, $d\Phi$ is a Fredholm operator

- domain must be a Banach manifold: but $C^{\infty}(\Sigma, M)$ is not complete!
- solution: extend Φ to a larger domain, e.g. **Sobolev spaces** $W^{k,p}(\Sigma, M)$ for kp > 2
- elliptic regularity: extension has same zero set

Introduction

• $\mathcal{M}_g(A, J)$ is not compact, but can compactify require compatible J (i.e. $\omega(\cdot, J\cdot)$ Riemannian metric)

Bad news: transversality and compactness

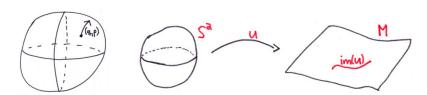
- $\mathcal{M}_{\sigma}(A, J)$ is not compact, but can compactify require compatible J (i.e. $\omega(\cdot, J\cdot)$ Riemannian metric)
- transversality failure: for some J, $\mathcal{M}_g(A, J)$ is not a manifold best case: holds for "generic" J

Sample results

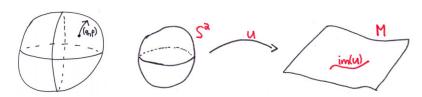
 more generally: transversality doesn't like symmetry e.g. multiply covered curves (or external group action)

$\mathsf{Theorem}$

For "almost all" compatible J, $\mathcal{M}_{g}^{*}(A, J)$ is a compactifiable smooth manifold of dimension $(\frac{\dim M}{2} - 3)(2 - 2g) + 2\langle c_1(TM), A \rangle$.



- Symplectic manifolds arise when describing mechanical systems.
- Periodic orbits of Hamiltonian systems can be understood using symplectic invariants.
- These invariants are defined using moduli spaces of pseudo-holomorphic curves.



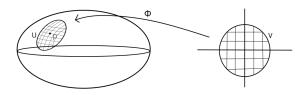
Sample results

- Symplectic manifolds arise when describing mechanical systems.
- Periodic orbits of Hamiltonian systems can be understood using symplectic invariants.
- These invariants are defined using moduli spaces of pseudo-holomorphic curves.

Thanks for listening! Any questions?

Smooth manifolds

- manifold: second countable Hausdorff topological space M locally homeomorphic to open ball in \mathbb{R}^n
- every $p \in M$ has a coordinate chart: $p \in U \subset M$ open, homeomorphism $\phi \colon V \to U$ for $V \subset \mathbb{R}^n$ open ball
- smooth manifold: all coordinate transformations from overlapping charts are smooth
- boundary: looks like upper half of \mathbb{R}^n



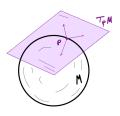
Examples of smooth *n*-dimensional manifolds

- n = 0: isolated points
- $n=1: \mathbb{R}, \mathbb{S}^1$
- n=2: \mathbb{R}^2 , \mathbb{S}^2 , \mathbb{T}^2 , Σ_g for $g\geq 1$

- $n \ge 3$: complicated; classification for $n \ge 4$ impossible
- $n \ge 3$: \mathbb{R}^n , \mathbb{S}^n , \mathbb{T}^n , \mathbb{RP}^n , \mathbb{CP}^n , $\{[z_0: z_1: z_2: z_3: z_4] \in \mathbb{CP}^4 \mid z_0^5 + \cdots + z_4^5 = 0\}$ configuration spaces in physics and engineering

How to measure area on a 2-manifold?

- locally: integrate density function
- globally: use a differential 2-form
- each p∈ M has tangent space T_pM,
 n-dimensional ℝ-vector space
- 2-form $\omega = \{\omega_p \colon T_pM \times T_pM \to \mathbb{R}\}_{p \in M}$ ω_p anti-symmetric bilinear, smoothly varying with p
- area form: each ω_p is non-degenerate
- symplectic 2-manifold: M plus choice of area form



Symplectic manifolds

Definition

A symplectic manifold (M, ω) is a smooth manifold M together with a closed non-degenerate 2-form ω .

- equivalently: atlas of **Darboux charts** $(x_1, y_1, \dots, x_n, y_n)$ in which ω looks like $\omega_0 = \sum_{i=1}^n dx^i \wedge dy^i$
- geometrically: symp. structure = signed area of closed curves
- ullet γ embedded closed curve in \mathbb{R}^2

 $\rightarrow A(\gamma)$ signed area of enclosed disc

 \bullet γ any oriented closed piece-wise smooth curve: decompose into closed embedded pieces Pictures taken from Schlenk Symplectic embedding problems old and pay (2017)

Symplectic manifolds (cont.)

- standard symplectic structure on \mathbb{R}^{2n} : map $\gamma \to A(\gamma) = A(\gamma_1) + \cdots + A(\gamma_n)$, where $\gamma = (\gamma_1, \dots, \gamma_n)$ any closed oriented curve
- symplectic structure on M is an atlas whose transition functions preserve signed area

Which manifolds are symplectic?

- no full answer known!
- necessary conditions
 - even dimension, orientable
 - ∃ (compatible) almost complex structure
 - if compact: $H^{2i}(M) \neq 0$ for $0 < 2i < \dim(M)$
 - additional conditions on dimension 4

Example

Sphere \mathbb{S}^n is **not** symplectic for n > 2.

Proof sketch of Arnold conjecture

given (M,ω) closed*; $H:\mathbb{S}^1\times M\to\mathbb{R}$ smooth non-degenerate

- $CF_k(M)$ is generated by 1-periodic orbits with index k
- in particular: #1-periodic orbits $\geq \sum_k \operatorname{rk} HF_k(M)$
- Morse theory: $\sum_{k} \operatorname{rk} H_{k}(M) \geq \sum_{i=0}^{2n} \operatorname{rk} H_{k}(M)$

$\mathsf{Theorem}$

For each k, there is an isomorphism $HF_k(M) \cong H_{2n-k}(M)$.

Details: Hamiltonian Floer homology

given: (M, ω) closed* symplectic manifold; $H: \mathbb{S}^1 \times M \to \mathbb{R}$ smooth, non-degenerate

- Floer chain complex $(CF_*(M,\omega),\partial)$, Hamiltonian Floer homology $HF(M,\omega) = H_*(CF_*(M,\omega),\partial)$
- $CF_*(M)$ generated by 1-periodic orbits of X_H
- grading by Conley-Zehnder index
- differential counts finite energy Floer cylinders connecting two 1-periodic orbits
- show: well-defined; independent of H