Dr. E. Hellmann

WS 2013/14

Algebraic Geometry I Exercise Sheet 9 Due Date: 19.12.2013

Exercise 1:

Let $f: X \to Y$ and $g: y \to Z$ and $h: Y' \to Y$ be morphisms of schemes. Let \mathcal{P} be one of the properties being *locally of finite type*, resp. *locally of finite presentation*, resp. *quasi-compact*.

- (i) Show that if f and g have the property \mathcal{P} , then $g \circ f$ has the property \mathcal{P} as well.
- (ii) Let f be a closed immersion. Show that f is of finite type. Show that f is of finite presentation if Y is locally noetherian.
- (iii) Let X' denote the fiber product $X' = X \times_Y Y'$ and write $f' : X' \to Y'$ for the canonical projection. Show that f' has the property \mathcal{P} if f has the property \mathcal{P} .

Exercise 2:

- (i) Let $S = \bigoplus_{d>0} S_d$ be a graded ring. Show that
 - (a) Proj S is empty if and only if every element of S_+ is nilpotent.
 - (b) $\operatorname{Proj} S$ is reduced if S is reduced.
 - (c) $\operatorname{Proj} S$ is integral if S has no zero-divisors.
- (ii) Let k be a field and let \bar{k} be an algebraic closure, k_s be a separable closure and k_p be a perfect closure of k. Let X be a k-scheme. Show that
 - (a) $X \times_k \bar{k}$ is irreducible if and only if $X \times_k k_s$ is irreducible if and only if $X \times_k K$ is irreducible for all field extension K of k.
 - (b) $X \times_k \overline{k}$ is reduced if and only if $X \times_k k_p$ is reduced if and only if $X \times_k K$ is reduced for all field extension K of k.

Exercise 3:

- (i) Let $\varphi : S \to T$ be a graded morphisms of graded rings and let $U = \{ \mathfrak{p} \in \operatorname{Proj} T \mid \mathfrak{p} \not\supseteq \varphi(S_+) \} \subset \operatorname{Proj} T$. Show that $U \subset \operatorname{Proj} T$ is open and that φ defines a natural morphism $f : U \to \operatorname{Proj} S$.
- (ii) Assume that φ is surjective. Show that $U = \operatorname{Proj} T$ and that f is a closed immersion.
- (iii) Assume that S is generated by finitely many homogeneous elements of degree 1 and write $A = S_0$. Show that the canonical morphism $\operatorname{Proj} S \to \operatorname{Spec} A$ is projective, i.e. that there exists some $N \ge 0$ and a commutative diagram

such that f is a closed immersion.

Exercise 4:

- (i) Let $X = \operatorname{Spec}(k[T_1, T_2]/(T_2^2 T_1^2(T_1 + 1))) \to \operatorname{Spec}(k[T_1, T_2]) = \mathbb{A}_k^2$ and let $Z \subset X \subset \mathbb{A}_k^2$ be the closed subscheme consisting of the origin. Show that the Blow-up $\operatorname{Bl}_X Z$ of X along Z embeds into $\operatorname{Bl}_{\mathbb{A}_k^2} Z$ and hence into $\mathbb{A}_k^2 \times \mathbb{P}_k^1$.
- (ii) Show that $\mathbb{A}^1_k \cong \operatorname{Bl}_X \mathbb{Z}$ and that in (homogeneous) coordinates the embedding of $\mathbb{A}^1_k \hookrightarrow \mathbb{A}^2_k \times \mathbb{P}^1$ is under this isomorphisms given by $t \mapsto (t^2 1, t(t^2 1), t)$.
- (iii) What happens if we blow up the origin on $Y = \operatorname{Spec}(k[T_1, T_2]/(t_2^2 T_1^3)) \hookrightarrow \mathbb{A}_k^2$?

Homepage: www.math.uni-bonn.de/people/hellmann/alggeom