Eleventh exercise sheet "Algebra II" winter term 2024/5. Using Proposition 3.1.4 from the lecture one can show

Problem 1 (4 points). Let $|\cdot|_{1,2}$ be two inequivalent and non-trivial valuations of a field K. Show that there is $x \in K$ with $|x|_1 > 1$ and $|x|_2 < 1$.

Problem 2 (4 points). Let N be a positive integer and $|\cdot|_i$, $1 \le i \le N$, be N pairwise inequivalent and non-trivial absolute values on a field K. Then there is $x \in K$ with $|x|_1 > 1$ and $|x|_i < 1$ for $1 < i \le N$.

Problem 3 (4 points). Under the assumptions of the previous problem, let $\varepsilon \in (0, \infty)_{\mathbb{R}}$. Show that there is $x \in K$ with $|1 - x|_1 < \varepsilon$ and $|x|_i < \varepsilon$ for $2 \le i \le N$.

Problem 4 (4 points). Let N be a positive integer and $|\cdot|_i$, $1 \le i \le N$, be N pairwise inequivalent and non-trivial absolute values on a field K. Let K_i be the completion of K with respect to $|\cdot|_i$. Show that the diagonal image of K in $\prod_{i=1}^N K_i$ is dense!

For the following three problems, let K be complete with non-Archmedean and non-trivial absolute value $|\cdot|$. Let $\mathfrak{k} = K^o/K^{oo}$ denote the residue field of K.

Problem 5 (3 points). Let $P \in K^{o}[T]$ be a polynomial with leading coefficient 1. If its residue class $\overline{P} \in \mathfrak{k}[T]$ is irreducible, show that P is irreducible as an element of K[T].

Problem 6 (3 points). Let \mathfrak{k}' be a finite separable field extension of \mathfrak{k} . Show that there are a finite separable field extension L/K with e = 1(*i. e.*, $|L^{\times}| = |K^{\times}|$ and an isomorphism $\mathfrak{k}' \xrightarrow{\lambda} \mathfrak{l} = L^o/L^{oo}$!

Problem 7 (3 points). Let $\mathfrak{k}' \xrightarrow{\lambda_1} \mathfrak{l}_1$ be another solution to the previous problem. Show that there is a unique isomorphism $L \xrightarrow{L} L_1$ of extension fields of \mathfrak{k} such that $\lambda_1 = \overline{\iota}\lambda$, where $\mathfrak{l} \xrightarrow{\overline{L}} \mathfrak{l}_1$ is the isomorphism of residue fields defined by ι .

Twenty of the 25 points available from this exercise sheet are bonus points which are disregarded in the calculation of the 50%-limit for passing the exercises.

Solutions should be submitted to the tutor by e-mail before Friday January 17 24:00.