Aufgabe 1 (Komplexe Zahlen). (a) Sei $z := \frac{1+4i}{2-3i}$. Berechnen Sie $\Re z$, $\Im z$ und \overline{z} . (3 Pkt.)

(b) Sei $c \in \mathbb{C}$ mit |c| < 1. Zeigen Sie, dass für $z \in \mathbb{C}$ die Eigenschaft $|z| \le 1$ genau dann gilt, wenn $|z - c| \le |1 - \overline{c}z|$. (4 Pkt.)

Hinweis: Sie dürfen die Rechenregeln vom Präsenzblatt 5, Aufgabe 2(a) frei benutzen.

Lösung. (a) Wir benutzen die Rechenregel $w\overline{w} = |w|^2$ für w = 2 - 3i und berechnen

$$z = \frac{1+4i}{2-3i} = \frac{1+4i}{2-3i} \cdot \frac{2+3i}{2+3i} = \frac{2-12+8i+3i}{4+9} = \frac{1}{13}(-10+11i).$$

Es folgt

$$\Re z = -\frac{10}{13}, \qquad \Im z = \frac{11}{13}, \qquad \overline{z} = -\frac{1}{13}(10+11i).$$

(b) Wir berechnen mithilfe von den Rechenregeln für komplexe Konjugation zuerst

$$|1 - \overline{c}z|^2 - |z - c|^2 = (1 - \overline{c}z)(1 - c\overline{z}) - (z - c)(\overline{z} - \overline{c})$$

$$= 1 + |c|^2|z|^2 - \overline{c}z - c\overline{z} - |z|^2 - |c|^2 + z\overline{c} + c\overline{z}$$

$$= (1 - |c|^2)(1 - |z|^2).$$

Es folgt

$$|z-c| \le |1-\overline{c}z| \iff |z-c|^2 \le |1-\overline{c}z|^2 \iff (1-|c|^2)(1-|z|^2) \ge 0 \iff 1-|z|^2 \ge 0,$$

wobei wir in der letzten Schritt |c| < 1 benutzt haben.

Aufgabe 2 (Konvergenz in Vektorräumen). Beweisen Sie die folgenden Aussagen:

- (a) Konvergiert eine Folge $(v_n)_{n\in\mathbb{N}}$ in einem normierten Vektorraum $(V,\|\cdot\|)$ gegen v, so konvergiert die Folge $(\|v_n\|)_{n\in\mathbb{N}}$ in \mathbb{R} gegen $\|v\|$. (3 Pkt.)
- (b) Die umgekehrte Implikation zu (a) gilt nicht, das heißt, aus der Konvergenz der Folge $(||v_n||)_{n\in\mathbb{N}}$ folgt nicht die Konvergenz der Folge $(v_n)_{n\in\mathbb{N}}$. (2 Pkt.)
- (c) Eine Folge $(\vec{v}_n)_{n\in\mathbb{N}}$ in $(\mathbb{R}^N, \|\cdot\|_2)$ mit $\vec{v}_n = (v_{n,j})_{j=1}^N$ konvergiert genau dann wenn für jedes $j \in \{1, \dots, N\}$ die Folge $(v_{n,j})_{n\in\mathbb{N}}$ in \mathbb{R} konvergiert. (3 Pkt.)
- (d) Es gibt eine beschränkte¹ Folge $(\vec{v}_n)_{n\in\mathbb{N}}$ in $V=(B(\mathbb{N}),\|\cdot\|_{\infty})$ mit $\vec{v}_n=(v_{n,j})_{j\in\mathbb{N}}$ sodass für jedes $j\in\mathbb{N}$ die Folge $(v_{n,j})_{n\in\mathbb{N}}$ in \mathbb{R} konvergiert, aber die Folge $(\vec{v}_n)_{n\in\mathbb{N}}$ in V nicht konvergiert. (2 Pkt.)
- Lösung. (a) Für $x, y \in V$ folgt aus der Dreiecksungleichung dass $||x|| = ||x y + y|| \le ||x y|| + ||y||$ und deshalb $||x|| ||y|| \le ||x y||$. Vertauschen wir x und y, so folgt auch $||y|| ||x|| \le ||x y||$ und deshalb gilt die 'umgekehrte Dreiecksungleichung'

$$|||x|| - ||y||| \le ||x - y||.$$

Sei nun $\epsilon > 0$. Wir wählen $n_0 \in \mathbb{N}$ so dass für alle $n \geq n_0$ gilt $||v - v_n|| < \epsilon$. Wenden wir die umgekehrte Dreiecksungleichung an mit x = v und $y = v_n$, dann folgt auch

$$|||v|| - ||v_n||| \le ||v - v_n|| < \epsilon$$

für alle $n \ge n_0$. Hiermit ist bewiesen dass $||v_n|| \to ||v||$ in \mathbb{R} .

¹Ähnlich zu Definition 4.3, nennen wir eine Folge $(v_n)_{n\in\mathbb{N}}$ in einem normierten Vektorraum $(V,\|\cdot\|)$ beschränkt falls die Menge $\{\|v_n\|\mid n\in\mathbb{N}\}$ eine beschränkte Teilmenge von \mathbb{R} ist.

- (b) Gegenbeispiel: sei $0 \neq v \in V$ und $v_n = (-1)^n v$. Dann ist die Folge $(||v_n||)_{n \in \mathbb{N}}$ konstant und deshalb konvergent, obwohl die Folge $(v_n)_{n \in \mathbb{N}}$ nicht konvergiert.
- (c) Sei $(\vec{v}_n)_{n\in\mathbb{N}}$ eine konvergente Folge in $(\mathbb{R}^N, \|\cdot\|_2)$ mit Grenzwert $\vec{v} = (v_j)_{j=1}^N$, und $\epsilon > 0$. Dann existiert $n_0 \in \mathbb{N}$ so dass für alle $n \geq n_0$ gilt $\|\vec{v}_n \vec{v}\|_2 < \epsilon$. Für jedes $1 \leq j \leq N$ folgt dann

$$|v_{n,i}-v_i| \leq ||\vec{v}_n-\vec{v}||_2 < \epsilon$$

für alle $n \ge n_0$, und somit ist jede Folge $(v_{n,j})_{n \in \mathbb{N}}$ eine konvergente Folge in \mathbb{R} .

Umgekehrt, seien $(v_{n,j})_{n\in\mathbb{N}}$ konvergente Folgen in \mathbb{R} für $1\leq j\leq N$ mit Grenzwerten $v_j\in\mathbb{R}$, und $\varepsilon>0$. Dann existiert für jedes $1\leq j\leq N$ ein $n_i\in\mathbb{N}$ so dass für alle $n\geq n_i$ gilt

$$|v_{n,j}-v_j|<\frac{\epsilon}{\sqrt{N}}.$$

Definieren wir $\vec{v}:=(v_j)_{j=1}^N\in\mathbb{R}^N$ und $n_0:=\max_{1\leq j\leq N}(n_j)$, so folgt für alle $n\geq n_0$ dass

$$\|\vec{v}_n - \vec{v}\|_2 = \left(\sum_{j=1}^N |v_{n,j} - v_j|^2\right)^{1/2} < \left(\sum_{j=1}^N \frac{\epsilon^2}{N}\right)^{1/2} = \epsilon,$$

und somit konvergiert $\vec{v}_n \to \vec{v}$ wenn $n \to \infty$.

(d) Für $n, j \in \mathbb{N}$ definieren wir

$$v_{n,j} := \begin{cases} 1, & \text{falls } n \le j, \\ 0, & \text{falls } n > j. \end{cases}$$

Dann ist klar dass für jedes $j \in \mathbb{N}$ die Folge $(v_{n,j})_{n \in \mathbb{N}}$ in \mathbb{R} gegen 0 konvergiert. Aber für alle $n, m \in \mathbb{N}$ mit n < m gilt

$$\|\vec{v}_m - \vec{v}_n\|_{\infty} = \sup_{j \in \mathbb{N}^1} |v_{m,j} - v_{n,j}| \ge |v_{m,n} - v_{n,n}| = 1,$$

und somit ist die Folge $(\vec{v}_n)_{n\in\mathbb{N}}$ nicht Cauchy und deshalb nicht konvergent.

Aufgabe 3 (Nullfolge). Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in $\mathbb{R}_{>0}$ und

$$x_n := \sum_{j=0}^n a_j + 1/a_j, \qquad n \in \mathbb{N}.$$

Beweisen Sie dass $(1/x_n)_{n\in\mathbb{N}}$ eine Nullfolge ist.

(5 Pkt.)

Lösung. Für jedes $j \in \mathbb{N}$ gilt $(a_j - 1)^2 \ge 0$. Hieraus folgt $a_j^2 + 1 \ge 2a_j$ und somit $a_j + 1/a_j \ge 2$. Deshalb ist $x_n \ge 2(n+1)$ für alle $n \in \mathbb{N}$. Gegeben $\epsilon > 0$, wählen wir $n_0 > \frac{1}{2\epsilon}$, und dann folgt für alle $n \ge n_0$ dass

$$\left| \frac{1}{x_n} - 0 \right| = \frac{1}{x_n} \le \frac{1}{2(n+1)} \le \frac{1}{2n_0} < \epsilon.$$

Hiermit haben wir gezeigt dass $1/x_n$ gegen 0 konvergiert.

Aufgabe 4 (Reihenkonvergenz). Bestimmen Sie für die nachfolgenden Reihen, ob sie jeweils konvergieren. Begründen Sie Ihre Antworte (Sie dürfen die Ergebnisse aus dem Skript bis einschließlich Abschnitt 6.1 und aus den Übungs- und Präsenzblättern benutzen).

(a)
$$\sum_{n=1}^{\infty} \frac{3^n}{n^3}$$
. (2 Pkt.)

(b)
$$\sum_{n=1}^{\infty} \frac{n^2}{n^3+3}$$
. (2 Pkt.)

(c)
$$\sum_{n=1}^{\infty} \frac{(n^2+1)^n}{(3n^2+8n+1)^n}$$
. (2 Pkt.)

(d)
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$
. (2 Pkt.)

Lösung. (a) Aus Lemma 4.10 wissen wir dass $n^3/3^n$ gegen Null konvergiert, und deshalb gilt $3^n/n^3 \to \infty$ wenn $n \to \infty$. Insbesondere ist die Folge $(3^n/n^3)_{n \in \mathbb{N}_{\geq 1}}$ keine Nullfolge, und es folgt (Präsenzblatt 4, Aufgabe 4(a)) dass die Folge der Partialsummen $\sum_{n=1}^{\infty} \frac{3^n}{n^3}$ nicht konvergiert. Also die Reihe $\sum_{n=1}^{\infty} \frac{3^n}{n^3}$ konvergiert nicht.

(b) Für jedes $n \ge 2$ gilt die Ungleichung

$$\frac{n^2}{n^3+3} = \frac{1}{n+3/n^2} \ge \frac{1}{n+1}.$$

Da die Reihe $\sum_{n} 1/n$ nicht konvergiert (Lemma 6.10), folgt aus Lemma 6.8 dass die Reihe $\sum_{n} \frac{n^2}{n^3+3}$ auch nicht konvergiert.

(c) Für jedes $n \ge 1$ gilt die Ungleichung

$$\frac{(n^2+1)^n}{(3n^2+8n+1)^n} = \left(\frac{1+1/n^2}{3+8/n+1/n^2}\right)^n \le \left(\frac{2}{3}\right)^n.$$

Wir wissen aus Lemma 6.4 dass die geometrische Reihe $\sum_n (2/3)^n$ konvergiert, und dann folgt aus Lemma 6.8 dass die Reihe $\sum_n \frac{(n^2+1)^n}{(3n^2+8n+1)^n}$ auch konvergiert.

(d) Es folgt aus Lemma 6.10 dass die Reihe
$$\sum_{n} \frac{1}{n\sqrt{n}} = \sum_{n} \frac{1}{n^{3/2}}$$
 konvergiert.

Aufgabe 5 (Reihenkonvergenz). Zeigen Sie, dass für alle $x \in \mathbb{R}$ mit |x| < 1 gilt

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n.$$
 (5 Pkt.)

Lösung. Für jedes $n \in \mathbb{N}$ berechnen wir

$$a_n := (1-x)\sum_{k=0}^n (k+1)x^k = \sum_{k=0}^n (k+1)x^k - \sum_{k=0}^n (k+1)x^{k+1}$$
$$= \sum_{k=0}^n (k+1)x^k - \sum_{k=1}^{n+1} kx^k = \sum_{k=0}^n x^k - (n+1)x^{n+1}.$$

Die geometrische Reihe konvergiert gegen 1/(1-x) (Lemma 6.4), und $(n+1)x^{n+1} \rightarrow 0$ (Lemma 4.10). Es folgt

$$(1-x)\sum_{k=0}^{\infty}(k+1)x^k = \lim_{n\to\infty}a_n = \sum_{k=0}^{\infty}x^k - \lim_{n\to\infty}(n+1)x^{n+1} = \frac{1}{1-x}.$$

Aufgabe 6 (Cauchyfolgen). Sei (M, d) ein metrischer Raum und $(a_n)_{n \in \mathbb{N}}$ eine Folge in M. Beweisen Sie folgende Aussagen:

- (a) Wenn $\sum_n d(a_n, a_{n+1})$ eine konvergente Reihe in $\mathbb R$ ist, dann ist $(a_n)_{n \in \mathbb N}$ eine Cauchyfolge in M. (3 Pkt.)
- (b) Wenn für alle $n \in \mathbb{N}$ stets $d(a_n, a_{n+1}) \le (3/4)^n$ gilt, dann ist $(a_n)_{n \in \mathbb{N}}$ eine Cauchyfolge in M. (2 Pkt.)
- Lösung. (a) Sei $\sum_n d(a_n,a_{n+1})$ eine konvergente Reihe und $\epsilon>0$. Aus dem Cauchy-Kriterium für Reihen (Proposition 6.11) folgt dass ein $n_0\in\mathbb{N}$ existiert sodass für alle $n,n'\in\mathbb{N}$ mit $n_0< n\leq n'$ gilt

$$\sum_{j=n}^{n'} d(a_j, a_{j+1}) < \epsilon.$$

Benutzen wir die Dreiecksungleichung (n' - n)-mal, so folgt

$$d(a_n, a_{n'}) \le \sum_{j=n}^{n'} d(a_j, a_{j+1}) < \varepsilon,$$

und hiermit ist bewiesen dass $(a_n)_{n\in\mathbb{N}}$ eine Cauchyfolge in M ist.

(b) Ist $d(a_n, a_{n+1}) \le (3/4)^n$ für alle $n \in \mathbb{N}$, so folgt aus Lemma 6.8 und Lemma 6.4 dass $\sum_n d(a_n, a_{n+1})$ konvergiert:

$$\sum_{n=0}^{\infty} d(a_n, a_{n+1}) \stackrel{6.8}{\leq} \sum_{n=0}^{\infty} (3/4)^n \stackrel{6.4}{=} \frac{1}{1 - 3/4} = 4.$$

Aus Teilaufgabe (a) folgt schließlich dass $(a_n)_{n\in\mathbb{N}}$ eine Cauchyfolge in M ist.