Aufgabe 1 (k-te Wurzeln). Sei $a \in \mathbb{R}$ mit a > 0 und $k \in \mathbb{N}_{\geq 1}$. Verallgemeinern Sie die Methode von Lemma 3.33, um zu beweisen dass eine eindeutige Zahl $b \in \mathbb{R}$ mit b > 0 existiert sodass $b^k = a$. (Wir schreiben $\sqrt[k]{a} = a^{1/k} = b$ und nennen b die k-te Wurzel von a.) (5 Pkt.)

Lösung. ObdA a > 1, sonst betrachte 1/a.

Seien $A := \{c \in \mathbb{R} \mid c^k \ge a \land c > 0\}$ (diese Menge ist nichtleer nach dem Archimedischen Prinzip) und $b := \inf A$. Wir wollen zeigen dass $b^k = a$.

Wenn $b^k < a$, dann wählen wir $0 < \varepsilon < \min((a - b^k)/\sigma, 1)$ (mit Hilfe von Satz 3.31), wobei $\sigma := \sum_{j=1}^k \binom{k}{j} b^{k-j}$. Mit dem binomischen Lehrsatz (Präsenzblatt 2, Aufgabe 6) folgt

$$(b+\epsilon)^k = b^k + \sum_{j=1}^k \binom{k}{j} b^{k-j} \epsilon^j \le b^k + \epsilon \sum_{j=1}^k \binom{k}{j} b^{k-j} = b^k + \epsilon \sigma < b^k + (a-b^k) = a.$$

Damit ist auch $b+\varepsilon$ eine untere Schranke für A, im Widerspruch zu $b=\inf A$. Wenn $b^k>a$, dann wählen wir $0<\varepsilon<(b^k-a)/\sigma$. Es folgt

$$(b-\epsilon)^k = b^k + \sum_{j=1}^k \binom{k}{j} b^{k-j} (-\epsilon)^j \ge b^k - \epsilon \sigma > b^k - (b^k - a) = a,$$

sodass $b - \epsilon \in A$, im Widerspruch zu $b = \inf A$.

Aufgabe 2 (Rationale Potenze). Sei $0 < a \in \mathbb{R}$. Für $n \in \mathbb{N}$ ist die Potenz a^n definiert (siehe Präsenzblatt 2, Aufgabe 6(a)). Für $m \in \mathbb{Z} \setminus \mathbb{N}$ und $a \neq 0$ definieren wir $a^m := (a^{-1})^{-m}$. Sie dürfen in dieser Aufgabe die Rechenregeln $a^{m+m'} = a^m a^{m'}$, $(a^m)^{m'} = a^{mm'}$, und $(ab)^m = a^m b^m$ für $a, b \in \mathbb{R}_{>0}$ und $m, m' \in \mathbb{Z}$ benutzen.

Sei nun q=m/n eine rationale Zahl mit $m\in\mathbb{Z}$ und $n\in\mathbb{N}_{\geq 1}$. Für $a\in\mathbb{R}_{>0}$ definieren wir

$$a^q := \sqrt[n]{a^m}.$$

(a) Beweisen Sie dass a^q wohldefiniert ist.

(b) Zeigen Sie dass $a^q = \sqrt[n]{a}^m$

(c) Beweisen Sie für beliebige
$$p, q \in \mathbb{Q}$$
 die Rechenregel $a^{p+q} = a^p a^q$. (3 Pkt.)

Lösung. Wir benutzen in dieser Aufgabe wiederholt für $a, b \ge 0$ und für beliebige $k \in \mathbb{N}_{\ge 1}$ die Äquivalenz (siehe Übungsblatt 4, Aufgabe 2(b.2))

$$a = b \iff a^k = b^k. \tag{*}$$

(a) Sei q = m/n = m'/n' mit $m, m' \in \mathbb{Z}$ und $n, n' \in \mathbb{N}_{\geq 1}$. Wir berechnen

$$\left(\sqrt[n']{a^{m'}}\right)^{nn'} = \left(\left(\sqrt[n']{a^{m'}}\right)^{n'}\right)^n = \left(a^{m'}\right)^n = a^{m'n} = a^{mn'} = \left(a^m\right)^{n'} = \left(\left(\sqrt[n]{a^m}\right)^n\right)^{n'} = \left(\sqrt[n]{a^m}\right)^{nn'}.$$

Wegen (*) folgt $\sqrt[n']{a^{m'}} = \sqrt[n]{a^m}$, und somit ist a^q wohldefiniert.

(b) Wir berechnen

$$\left(\sqrt[n]{a}^m\right)^n = \sqrt[n]{a}^{nm} = \left(\sqrt[n]{a}^n\right)^m = a^m = \sqrt[n]{a^m}^n,$$

und wegen (*) folgt $\sqrt[n]{a^m} = \sqrt[n]{a}^m$.

(c) Wir bemerken zuerst dass $\sqrt[k]{ab} = \sqrt[k]{a}\sqrt[k]{b}$ für alle $k \in \mathbb{N}_{>1}$ und $0 < a, b \in \mathbb{R}$. Dies folgt aus (*) und

$$\left(\sqrt[k]{ab}\right)^k = ab = \left(\sqrt[k]{a}\right)^k \left(\sqrt[k]{b}\right)^k = \left(\sqrt[k]{a}\sqrt[k]{b}\right)^k.$$

Seien nun $q = \frac{m}{n}$ und $p = \frac{m'}{n'}$, dann ist $p + q = \frac{m'n + mn'}{nn'}$. Wir berechnen

$$a^{p+q} = {}^{nn'}\sqrt{a^{m'n+mn'}} = {}^{nn'}\sqrt{a^{m'n}} {}^{nn'}\sqrt{a^{mn'}} \stackrel{\text{(a)}}{=} {}^{n'}\sqrt{a^{m'}} {}^{n}\sqrt{a^m} = a^p a^q.$$

Aufgabe 3 (Konvergenz von Potenz- und Wurzelfunktionen). Sei $k \in \mathbb{N}_{\geq 1}$ und $0 < q \in \mathbb{Q}$. Sei $(a_n)_{n \in \mathbb{N}}$ eine Folge mit $a_n \geq 0$ für alle $n \in \mathbb{N}$ die gegen $a \in \mathbb{R}$ konvergiert. Beweisen Sie die folgenden Aussagen:

(a)
$$\lim_{n\to\infty} (a_n)^k = a^k.$$
 (2 Pkt.)

(b)
$$\lim_{n\to\infty} (a_n)^{1/k} = a^{1/k}$$
. (5 Pkt.)

(c)
$$\lim_{n\to\infty} (a_n)^q = a^q$$
. (2 Pkt.)

Lösung. (a) Wir beweisen die Aussage mittels vollständiger Induktion nach $k \in \mathbb{N}_{\geq 1}$. Für k = 1 ist die Aussage vorausgesetzt (IA).

<u>IS</u>: Nehmen wir an dass $\lim_{n\to\infty} (a_n)^k = a^k$ (<u>IH</u>), dann folgt mithilfe von Lemma 4.9.(ii):

$$\lim_{n\to\infty} (a_n)^{k+1} \stackrel{4.9.(ii)}{=} \lim_{n\to\infty} (a_n)^k \cdot \lim_{n\to\infty} a_n \stackrel{\text{IH}}{=} a^k \cdot a = a^{k+1}.$$

(b) Für $x, y \in \mathbb{R}$ beweisen wir zuerst mittels vollständiger Induktion für alle $k \in \mathbb{N}$ die Gleichheit

$$x^{k} - y^{k} = (x - y) \sum_{j=0}^{k-1} x^{j} y^{k-1-j}.$$

IA: Für k = 1 gilt $x - y = (x - y)x^{0}y^{0}$.

IS:

$$x^{k+1} - y^{k+1}$$

$$= x(x^k - y^k) + (x - y)y^k$$

$$\stackrel{\text{IH}}{=} (x - y) \left(\sum_{j=0}^{k-1} x^{j+1} y^{k-1-j} + y^k \right)$$

$$= (x - y) \left(\sum_{j=1}^k x^j y^{k-j} + y^k \right)$$

$$= (x - y) \sum_{j=0}^k x^j y^{k-j}.$$

Hiermit ist die gewünschte Gleichheit bewiesen.

Insbesondere folgt für x > 0 und $y \ge 0$ die Ungleichung

$$|x - y| = \frac{x^k - y^k}{\sum_{j=0}^{k-1} x^j y^{k-1-j}} < \frac{x^k - y^k}{x^{k-1}}.$$
 (**)

Sei nun $(a_n)_{n\in\mathbb{N}}$ eine Folge mit $a_n \geq 0$ für alle $n \in \mathbb{N}$ die gegen $a \in \mathbb{R}$ konvergiert, und sei $k \in \mathbb{N}_{\geq 1}$. Wir betrachten zuerst den Fall a = 0. Sei $\varepsilon > 0$. Dann existiert $n_0 \in \mathbb{N}$ so dass für alle $n \geq n_0$ gilt $|a_n| < \varepsilon^k$. Es folgt $|\sqrt[k]{a_n}| < \varepsilon$ (siehe Übungsblatt 4, Aufgabe 2(b.3)) und somit $\sqrt[k]{a_n} \to 0$.

Wir betrachten zunächst den Fall $a \neq 0$. Sei $\varepsilon > 0$. Dann existiert $n_0 \in \mathbb{N}$ so dass für alle $n \geq n_0$ gilt $|a - a_n| < a^{(k-1)/k} \varepsilon$. Wenden wir die Ungleichung (**) an mit $x = a^{1/k}$ und $y = (a_n)^{1/k}$, so folgt für alle $n \geq n_0$

$$|a^{1/k} - (a_n)^{1/k}| \stackrel{(**)}{\leq} \frac{|a - a_n|}{a^{(k-1)/k}} < \epsilon,$$

und deshalb $(a_n)^{1/k} \to a^{1/k}$.

(c) Sei 0 < q = m/k mit $m, k \in \mathbb{N}_{\geq 1}$. Mithilfe von (a) und (b) folgt

$$\lim_{n\to\infty} (a_n)^q = \lim_{n\to\infty} (a_n)^{m/k} \stackrel{\text{(a)}}{=} \left(\lim_{n\to\infty} (a_n)^{1/k}\right)^m \stackrel{\text{(b)}}{=} \left(\left(\lim_{n\to\infty} a_n\right)^{1/k}\right)^m = a^q.$$

Aufgabe 4 (Monotone Konvergenz). Sei $0 < c \in \mathbb{R}$ und sei $(a_n)_{n \in \mathbb{N}}$ die Folge in \mathbb{R} gegeben durch

$$a_0 := 0, \qquad a_{n+1} := \sqrt{c + a_n}, \ n \in \mathbb{N}.$$

Hinweis: Sie dürfen in dieser Aufgabe die Lösungsformel (a-b-c-Formel) für quadratische Gleichungen benutzen.

(a) Zeigen Sie, dass
$$(a_n)_{n\in\mathbb{N}}$$
 monoton ist. (3 Pkt.)

(b) Beweisen Sie, dass genau ein
$$x > 0$$
 existiert so, dass $\sqrt{c + x} = x$. (2 Pkt.)

(c) Beweisen Sie dass
$$(a_n)_{n\in\mathbb{N}}$$
 gegen x konvergiert. (4 Pkt.)

Lösung. (a) Wir beweisen $a_{n+1} > a_n$ mittels vollständiger Induktion.

$$\underline{\text{IA}}$$
: Für $n = 0$ gilt $a_1 = \sqrt{c} > 0 = a_0$.

 $\underline{\text{IS}}$: Gilt $a_{n+1} > a_n$ für ein festes $n \in \mathbb{N}$ (IH), so folgt $a_{n+2} = \sqrt{c + a_{n+1}} \stackrel{\text{IH}}{>} \sqrt{c + a_n} = a_{n+1}$ (wobei wir wieder Übungsblatt 4, Aufgabe 2(b.3) benutzt haben).

- (b) Die Gleichung $x^2 x c = 0$ hat zwei Lösungen $x_{\pm} = \frac{1}{2}(-1 \pm \sqrt{1 + 4c})$, wobei $x_{+} > 0$ und $x_{-} < 0$.
- (c) Wir beweisen zuerst mittels vollständiger Induktion dass $x = x_+ = \frac{1}{2}(-1 + \sqrt{1 + 4c})$ eine obere Schranke ist.

IA: Für n = 0 gilt $a_0 = 0 < X$.

IS: Gilt
$$a_n < x$$
 für ein festes $n \in \mathbb{N}$ (IH), so folgt $a_{n+1} = \sqrt{c + a_n} \stackrel{\text{IH}}{<} \sqrt{c + x} = x$.

Deshalb konvergiert $(a_n)_{n\in\mathbb{N}}$ (Proposition 4.13) gegen ein $0 < a \in \mathbb{R}$. Mithilfe von Aufgabe 3(b) konvergiert auch $\sqrt{c+a_n}$ gegen $\sqrt{c+a}$, und deshalb ist $a=\lim_{n\to\infty}a_{n+1}=\lim_{n\to\infty}\sqrt{c+a_n}=\sqrt{c+a}$. Aus Teilaufgabe (b) folgt schließlich a=x.

Aufgabe 5 (Konvergenz). Wir definieren die Folge $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R} rekursiv durch

$$a_0 := 1,$$
 $a_{n+1} := 1 + 1/a_n, n \in \mathbb{N}.$

Hinweis: Sie dürfen in dieser Aufgabe die Lösungsformel (a-b-c-Formel) für quadratische Gleichungen benutzen.

- (a) Zeigen Sie, dass die gerade Teilfolge $(a_{2n})_{n\in\mathbb{N}}$ und die ungerade Teilfolge $(a_{2n+1})_{n\in\mathbb{N}}$ monoton sind. (3 Pkt.)
- (b) Zeigen Sie, dass diese gerade und ungerade Teilfolgen konvergieren. (3 Pkt.)
- (c) Zeigen Sie, dass die gerade und ungerade Teilfolgen denselben Grenzwert a haben. Schlussfolgern Sie hieraus, dass auch die Folge $(a_n)_{n\in\mathbb{N}}$ gegen a konvergiert. (3 Pkt.)

Lösung. (a) Für die (un)geraden Teilfolgen haben wir die Rekursionsformel

$$a_{n+2} = 1 + \frac{1}{a_{n+1}} = 1 + \frac{1}{1 + 1/a_n} = \frac{2a_n + 1}{a_n + 1}.$$

Wir zeigen zuerst mittels vollständiger Induktion dass $a_{2n+2} > a_{2n}$ für alle $n \in \mathbb{N}$:

IA: Für
$$n = 0$$
 gilt $a_2 = \frac{3}{2} > 1 = a_0$.

<u>IS</u>: Ist $a_{2n+2} > a_{2n}$ für ein festes $n \in \mathbb{N}$ (IH), dann folgt $1 + 1/a_{2n+2} < 1 + 1/a_{2n}$ und deshalb

$$a_{2n+4} = 1 + \frac{1}{1 + 1/a_{2n+2}} > 1 + \frac{1}{1 + 1/a_{2n}} = a_{2n+2}.$$

Das heißt, die gerade Teilfolge ist monoton wachsend. Ebenso beweisen wir dass die ungerade Teilfolge monoton fallend ist:

IA: Für
$$n = 1$$
 gilt $a_3 = \frac{5}{3} < 2 = a_1$.

<u>IS</u>: Ist $a_{2n+3} < a_{2n+1}$ für ein festes $n \in \mathbb{N}$ (IH), dann folgt $1 + 1/a_{2n+3} > 1 + 1/a_{2n+1}$ und deshalb

$$a_{2n+5} = 1 + \frac{1}{1 + 1/a_{2n+3}} < 1 + \frac{1}{1 + 1/a_{2n+1}} = a_{2n+3}.$$

(b) Wir bestimmen zuerst die Fixpunkte der Gleichung $x = \frac{2x+1}{x+1}$. Diese können wir umschreiben als $x^2 - x - 1 = 0$, und wir bekommen die Lösungen $x_{\pm} = \frac{1}{2} \pm \frac{1}{2} \sqrt{5}$.

Wir behaupten dass x_+ eine obere Schranke für a_{2n} ist:

IA: Für
$$n = 0$$
 gilt $a_0 = 1 < x_+$.

 $\underline{\mathrm{IS}}$: Ist $a_{2n} < x_+$ für ein festes $n \in \mathbb{N}$ (IH), so folgt $1 + 1/a_{2n} > 1 + 1/x_+$ und

$$a_{2n+2} = 1 + \frac{1}{1 + 1/a_{2n}} < 1 + \frac{1}{1 + 1/x_{+}} = x_{+}.$$

Somit ist die gerade Teilfolge monoton wachsend und nach oben beschränkt durch x_+ , und deshalb konvergent (Proposition 4.13). Ebenso zeigt man dass die ungerade Teilfolge monoton fallend und durch x_+ nach unten beschränkt ist.

(c) Wir wissen aus (b) dass die gerade Teilfolge gegen ein $0 < a_g \in \mathbb{R}$ konvergiert. Mit den Rechenregeln von Lemma 4.9 folgt dass $1 + \frac{1}{1+1/a_n}$ gegen $1 + \frac{1}{1+1/a_g}$ konvergiert, und es folgt $a_g = 1 + \frac{1}{1+1/a_g}$. Wegen $a_n > 0$ kann $x_- < 0$ nicht der Grenzwert sein, und wir konkludieren $a_g = x_+$. Ebenso zeigt man dass die ungerade Teilfolge auch gegen x_+ konvergiert. Da die Grenzwerte der geraden und ungeraden Teilfolgen übereinstimmen, folgt schließlich (siehe Präsenzblatt 4, Aufgabe 7(c)) dass auch $(a_n)_{n \in \mathbb{N}}$ gegen x_+ konvergiert.