Aufgabe 1 (K1-Ring). Sei *R* ein K1-Ring.

(a) Wir definieren a - b := a + (-b). Beweisen Sie für alle $a, b, c \in R$ die folgenden Rechenregeln:

$$a - (b + c) = (a - b) - c,$$
 $(a - b)c = ac - bc.$ (5 Pkt.)

(b) Sei R nun total geordnet und nullteilerfrei. Beweisen Sie für alle $a, b, c \in R$ die Aussagen

$$ab > 0 \iff (a > 0 \land b > 0) \lor (a < 0 \land b < 0), \qquad a < b \land 0 < c \implies ac < bc.$$
 (5 Pkt.)

Lösung. (a) Wir benutzen die Rechenregeln -(b+c)=(-b)+(-c) und (-b)c=-(bc) (siehe Präsenzblatt 3, Aufgabe 2(a)). Dann folgt

$$a - (b + c) = a + (-(b + c)) = a + (-b) + (-c) = (a - b) - c$$

und

$$(a - b)c = (a + (-b))c = ac + (-b)c = ac + (-(bc)) = ac - bc.$$

- (b) Die erste Äquivalenz folgt aus den folgenden drei Implikationen:
 - $(a > 0 \land b > 0) \implies ab > 0$: Seien a > 0 und b > 0. Da R total geordnet ist, folgt $ab \ge 0$ (siehe Definition 3.10.(ii)). Da R nullteilerfrei ist (und $a \ne 0 \ne b$), folgt $ab \ne 0$ und deshalb ab > 0.
 - $(a < 0 \land b < 0) \implies ab > 0$: Seien a < 0 und b < 0, dann sind (-a) > 0 und (-b) > 0 und aus der ersten Implikation folgt ab = (-a)(-b) > 0.
 - $ab > 0 \implies (a > 0 \land b > 0) \lor (a < 0 \land b < 0)$: Sei ab > 0. Da R nullteilerfrei ist, gilt entweder a > 0 oder a < 0. Wir betrachten zuerst den Fall a > 0. Wegen Lemma 3.13.(iii) gilt $b \ge 0$. Aber $b \ne 0$ (da R nullteilerfrei ist), also gilt b > 0. Im Fall a < 0 betrachten wir (-a) > 0 und es folgt ebenso (-b) > 0, also b < 0.

Schließlich zeigen wir noch die letzte Implikation:

 $a < b \land 0 < c \implies ac < bc$: Es gilt b - a > 0, und da R total geordnet ist folgt $(b - a)c \ge 0$. Da R nullteilerfrei ist, gilt $(b - a)c \ne 0$ und wir konkludieren ac < ac + (b - a)c = bc.

Aufgabe 2 (Körper). (a) Sei K ein K1-Ring. Beweisen Sie, dass die folgenden Aussagen äquivalent sind: (4 Pkt.)

- (a.1) K ist ein Körper;
- (a.2) \mathbb{K} hat mit mindestens zwei Elemente, und für alle $a, b \in \mathbb{K}$ mit $a \neq 0$ hat die Gleichung ax = b genau eine Lösung $x \in \mathbb{K}$.
- (b) Sei \mathbb{K} ein total geordneter Körper (d.h., ein Körper und ein total geordneter K1-Ring). Beweisen Sie für alle $a, b \in \mathbb{K}$ die folgenden Aussagen: (6 Pkt.)
 - (b.1) $a < b \implies (\exists c \in \mathbb{K}) \ a < c \land c < b$.
 - (b.2) Für jedes $n \in \mathbb{N}_{>1}$ gilt $(a, b \ge 0 \land a^n = b^n) \implies a = b$.
 - (b.3) Für jedes $n \in \mathbb{N}_{>1}$ gilt $(a, b \ge 0 \land a^n > b^n) \implies a > b$.

Lösung. (a) (a.1) \Longrightarrow (a.2): Ist \mathbb{K} ein Körper, dann gilt $0 \neq 1$, und insbesondere hat \mathbb{K} mindestens zwei Elemente. Gilt ax = b mit $a \neq 0$, dann existiert a^{-1} und wir haben eine Lösung $x = a^{-1}b$:

$$ax = a(a^{-1}b) = (aa^{-1})b = 1b = b.$$

Ist $y \in \mathbb{K}$ auch eine Lösung, dann folgt

$$y = 1y = (a^{-1}a)y = a^{-1}(ay) = a^{-1}b = x,$$

also die Lösung ist eindeutig.

- (a.2) \implies (a.1): Wegen Aufgabe 2(b) vom Präsenzblatt 3 gilt $0 \ne 1$. Für jedes $a \in \mathbb{K}$ mit $x \ne 0$, hat ax = 1 genau eine Lösung, und deshalb existiert a^{-1} . Wir konkludieren dass \mathbb{K} ein Körper ist.
- (b) (b.1) Wir bemerken zuerst dass es eine injektive ordnungserhaltende Abbildung $\mathbb{Q} \hookrightarrow \mathbb{K}$ gibt (Satz 3.25). Insbesondere gibt es ein Element $0 < \frac{1}{2} \in \mathbb{K}$ mit $\frac{1}{2} \cdot 2 = 1$ und 2 = 1 + 1. Sei nun a < b. Dann gelten auch a + a < a + b und a + b < b + b, und wir haben die

$$a = \frac{1}{2}(1+1)a = \frac{1}{2}(a+a) < \frac{1}{2}(a+b) < \frac{1}{2}(b+b) = \frac{1}{2}(1+1)b = b.$$

Es existiert also $c := \frac{1}{2}(a+b)$ mit a < c < b.

(b.2) Seien $a, b \ge 0$ mit $a^n = b^n$. Widerspruchsbeweis: wir nehmen an dass $a \ne b$. Ohne Beschränkung der Allgemeinheit, sei a < b. Dann folgt mittels vollständiger Induktion dass $a^m < b^m$ für alle $m \in \mathbb{N}_{\ge 1}$:

IA: Für m = 1 ist a < b vorausgesetzt.

 $\underline{\mathrm{IS}} \text{: Gilt } a^m < b^m \text{, dann folgt } a^{m+1} = a^m a \leq a^m b \overset{\mathrm{IH}}{<} b^m b = b^{m+1}.$

Mit m = n bekommen wir $a^n < b^n$, im Widerspruch zu $a^n = b^n$, und deswegen war die Voraussetzung a < b falsch. Ebenso ist a > b falsch und es folgt a = b.

(b.3) Seien $a, b \ge 0$ mit $a^n > b^n$. Widerspruchsbeweis: nehmen wir an $a \le b$, dann folgt wie in (b.2) mittels Induktion dass $a^n \le b^n$. Aber dies widerspricht $a^n > b^n$, also die Annahme $a \le b$ war falsch, und es gilt a > b.

Aufgabe 3 (Infimum und Supremum). Man bestimme jeweils Infimum und Supremum der folgenden Teilmengen von \mathbb{R} und untersuche, ob diese Mengen Maximum bzw. Minimum besitzen. Begründen Sie Ihre Antworten.

(a)
$$M_1 := \{(-1)^{n+1}(1 + \frac{1}{n+1}) \mid n \in \mathbb{N}\};$$
 (3 Pkt.)

(b)
$$M_2 := \left\{ \frac{1}{n+1} + \frac{1}{m+1} \mid n, m \in \mathbb{N} \right\};$$
 (3 Pkt.)

(c)
$$M_3 := \{x \in \mathbb{R} \mid x^2 + 3x + 1 \le 0\};$$
 (3 Pkt.)

(d)
$$M_4 := \{x \in \mathbb{Q} \mid x^2 < 9\}.$$
 (3 Pkt.)

Lösung. (a) Sei $a_n := (-1)^{n+1}(1+\frac{1}{n+1})$ für $n \in \mathbb{N}$. Wir bemerken zuerst dass $a_n < 0$ für gerade n und $a_n > 0$ für ungerade n. Um das Supremum zu bestimmen, müssen wir also nur ungerade n betrachten. Es gilt $a_1 = \frac{3}{2}$, und für alle ungerade n > 1 gilt $\frac{1}{n+1} < \frac{1}{2}$ und deshalb $a_n = 1 + \frac{1}{n+1} < \frac{3}{2}$.

Hiermit haben wir gezeigt dass $\frac{3}{2}$ eine obere Schranke ist für M_1 , und wegen $a_1 = \frac{3}{2}$ ist $\frac{3}{2}$ die kleinste obere Schranke sowie das Maximum:

$$\sup(M_1) = \max(M_1) = \frac{3}{2}.$$

Für das Infimum betrachten wir gerade $n \in \mathbb{N}$, und aus $a_0 = -2$ und $a_n > -2$ für alle gerade n folgt

$$\inf(M_1) = \min(M_1) = -2.$$

(b) Sei $a_{n,m} := \frac{1}{n+1} + \frac{1}{m+1}$ für $n, m \in \mathbb{N}$. Es gilt $a_{0,0} = 2$ und $a_{n,m} \le 2$ für alle $n, m \in \mathbb{N}$, und somit

$$\sup(M_2) = \max(M_2) = 2.$$

Weiterhin gilt $a_{n,m} > 0$ für alle $n, m \in \mathbb{N}$, also 0 ist eine untere Schranke. Wegen der Archimedischen Eigenschaft ist 0 die größte untere Schranke:

$$\inf(M_2) = 0.$$

Da $0 \notin M_2$ gibt es kein Minimum in M_2 .

(c) Wir lösen zuerst die Gleichung $f(x) := x^2 + 3x + 1 = 0$, und finden die Lösungen

$$x_{+} := -\frac{3}{2} + \frac{1}{2}\sqrt{5}, \qquad x_{-} := -\frac{3}{2} - \frac{1}{2}\sqrt{5}.$$

Wir faktorisieren $f(x) = (x - x_+)(x - x_-)$ (Sie werden in der Algebra lernen dass man Polynome mit komplexen Koeffizienten immer eindeutig als Produkt linearer Faktoren schreiben kann; dieses Ergebnis wird hier aber nicht benutzt; vielmehr tun wir so als hätten wir die Faktorisierung geraten und anschließend ihre Korrektheit überprüft), und dann sehen wir dass

$$f(x) \le 0 \iff (x \le x_+ \land x \ge x_-) \lor (x \ge x_+ \land x \le x_-).$$

Aber wegen $x_- < x_+$ ist die Aussage $(x \ge x_+ \land x \le x_-)$ immer falsch, und deshalb ist $f(x) \le 0$ genau dann wenn $x_- \le x \le x_+$. Wir konkludieren:

$$\sup(M_3) = \max(M_3) = x_+ = -\frac{3}{2} + \frac{1}{2}\sqrt{5}, \quad \inf(M_3) = \min(M_3) = x_- = -\frac{3}{2} - \frac{1}{2}\sqrt{5}.$$

(d) Die Zahl 3 ist eine obere Schranke, denn für jedes $x \ge 3$ gilt $x^2 \ge 9$. Sei $s \in \mathbb{R}$ mit s < 3. Wegen Satz 3.31 existiert ein $x \in \mathbb{Q}$ mit s < x < 3, und dann gilt $s^2 < x^2 < 9$. Somit ist s keine obere Schranke für M_4 , und deshalb ist 3 die kleinste obere Schranke:

$$\sup(M_4)=3.$$

Da $3 \notin M_4$ gibt es kein Maximum in M_4 . Ebenso zeigt man dass

$$\inf(M_4) = -3,$$

und dass es kein Minimum in M_4 gibt.

Aufgabe 4. Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergente Folgen in \mathbb{R} . Wir nehmen an dass $b_n\neq 0$ für alle $n\in\mathbb{N}$ sowie $\lim_{n\to\infty}b_n\neq 0$. Beweisen Sie, dass die Folge $(c_n)_{n\in\mathbb{N}}$ mit $c_n:=a_n/b_n$ für $n\in\mathbb{N}$, auch konvergiert, und dass gilt

$$\lim_{n \to \infty} c_n = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}.$$
 (5 Pkt.)

Lösung. Wir benutzen die Rechenregeln aus Lemma 4.9. Seien $a:=\lim_{n\to\infty}a_n$ und $b:=\lim_{n\to\infty}b_n$. Wegen der Annahme $b_n\neq 0$ für alle $n\in\mathbb{N}$ sowie $b\neq 0$, folgt aus Lemma 4.9.(iii) dass $1/b_n$ gegen b konvergiert. Aus Lemma 4.9.(ii) konkludieren wir dann dass $a_n/b_n=a_n(1/b_n)$ gegen a/b=a(1/b) konvergiert. \square

Aufgabe 5 (Konvergenz einer Folge). Wir betrachten die Folge $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R} , wobei

$$a_n := \frac{n^2}{n^2 + 1}, \quad n \in \mathbb{N}.$$

Zeigen Sie mittels zwei Methoden dass die Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert:

- (a) direkt anhand der in der Vorlesung gegebenen Definition der Konvergenz von Folgen. (4 Pkt.)
- (b) anhand der Rechenregeln für Grenzwerte und des (aus der Vorlesung bekannten) Grenzwertes von $(\frac{1}{n})_{n\in\mathbb{N}}$. (4 Pkt.)

Lösung. (a) Wir zeigen direkt (anhand Definition 4.1) dass a_n gegen a=1 konvergiert. Sei $\varepsilon>0$. Wegen der Archimedischen Eigenschaft existiert ein $m\in\mathbb{N}$ mit $m>\varepsilon^{-1}$. Wir wählen nun ein $n_0\in\mathbb{N}$ so dass $n_0^2+1\geq m$ (z.B. $n_0=m$). Dann folgt für alle $n\geq n_0$:

$$|a_n - a| = a - a_n = 1 - \frac{n^2}{n^2 + 1} = \frac{1}{n^2 + 1} \le \frac{1}{n_0^2 + 1} \le \frac{1}{m} < \epsilon.$$

(b) Diesmal benutzen wir die Rechenregeln aus Lemma 4.9:

$$\frac{1}{n} \to 0 \stackrel{4.9.(ii)}{\Longrightarrow} \frac{1}{n^2} = \frac{1}{n} \frac{1}{n} \to 0 \cdot 0 = 0$$

$$\stackrel{4.9.(ii)}{\Longrightarrow} 1 + \frac{1}{n^2} \to 1 + 0 = 1$$

$$\stackrel{4.9.(iii)}{\Longrightarrow} \frac{n^2}{n^2 + 1} = \frac{1}{1 + \frac{1}{n^2}} \to \frac{1}{1} = 1.$$