Abgabefrist: Freitag 5.2. um 12:00 Uhr.

Bemerkung: dieses Blatt ist für die Klausurzulassung nicht mehr relevant. (Der Stoff ist dennoch klausurrelevant!)

Aufgabe 1 (Taylorpolynome von Polynomen). Es sei $n \in \mathbb{N}$ und $p : \mathbb{R} \to \mathbb{R}$ eine Polynomfunktion vom Grad $n \in \mathbb{N}$, d.h., p besitzt die Darstellung

$$p(x) = \sum_{k=0}^{n} c_k x^k, \qquad x \in \mathbb{R},$$

wobei $c_k \in \mathbb{R}$. Zeigen Sie, dass für alle $x, a \in \mathbb{R}$ gilt

$$p(x) = \sum_{k=0}^{n} \frac{p^{(k)}(a)}{k!} (x - a)^{k}.$$

Aufgabe 2 (Taylorpolynome). Berechnen Sie für folgende offene Intervalle $I \subseteq \mathbb{R}$, Funktionen $f: I \to \mathbb{R}$ und Punkte $a \in I$ das Taylorpolynom zweiten Grades von f an der Stelle a.

- (a) $I = \mathbb{R}, f(x) = x^2 \sin x, a = \pi/2.$
- (b) $I = (-1, 1), f(x) = \arcsin x, a = 0.$
- (c) $I = (0, \infty), f(x) = \ln(x^2 + x), a = 1.$

Aufgabe 3 (Extremstellen). Bestimmen Sie alle lokalen und globalen Extremstellen der Funktion $f:(0,1] \to \mathbb{R}$ mit

$$f(x) := \frac{5}{2} \ln x + (x-3)^2.$$

Aufgabe 4 (Integral von x^2). In dieser Aufgabe integrieren Sie eine Funktion "von Hand". Sei $0 \le a < b < \infty$, und sei $f: [a,b] \to \mathbb{R}$ gegeben durch $f(x) := x^2$. Für $J \in \mathbb{N}_{\ge 1}$ betrachten wir die Zerlegungen $\mathfrak{Z}_J = (t_0, \dots, t_J)$ mit $t_j := a + j \frac{b-a}{J}$.

(a) Berechnen Sie $\overline{S}(f, \mathfrak{Z}_J)$ sowie $\underline{S}(f, \mathfrak{Z}_J)$.

Hinweis: Sie dürfen (ohne Beweis) die folgenden Potenzsummen benutzen:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}, \qquad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

(b) Beweisen Sie dass die folgenden Grenzwerte existieren und gleich sind:

$$\lim_{J\to\infty} \underline{S}(f,\mathfrak{Z}_J) = \lim_{J\to\infty} \overline{S}(f,\mathfrak{Z}_J).$$

(c) Zeigen Sie (direkt nach der Definition) dass f auf [a, b] Darboux-integrierbar ist, und berechnen Sie $\int_a^b f(x)dx$.