Aufgabe 1 (Ungleichung vom arithmetischen und geometrischen Mittel). In dieser Aufgabe beweisen wir für alle $n \in \mathbb{N}_{>0}$ und alle positiven reellen Zahlen $a_1, \dots, a_n \ge 0$, dass

$$\left(\frac{1}{n}\sum_{k=1}^{n}a_{k}\right)^{n}\geq\prod_{k=1}^{n}a_{k}.\tag{1}$$

(a) Zeigen Sie, dass für alle $n \in \mathbb{N}_{>0}$ Zahlen $a_1, \dots, a_n > 0$ existieren, so dass

$$\left(\frac{1}{n}\sum_{k=1}^n a_k\right)^n = \prod_{k=1}^n a_k.$$

- (b) Zeigen Sie die Ungleichung (1) für die Fälle n=1 und n=2.
- (c) Zeigen Sie die Ungleichung (1) für den Fall $n = 2^k, k \in \mathbb{N}$.
- (d) Zeigen Sie die Ungleichung (1) für alle $n \in \mathbb{N}_{>0}$.

Lösung. (a) Nehmen wir $a_j := a > 0$ für alle $1 \le j \le n$, so folgt

$$\left(\frac{1}{n}\sum_{k=1}^{n}a_{k}\right)^{n}=a^{n}=\prod_{k=1}^{n}a_{k}.$$

(b) Der Fall n=1 ist klar. Für den Fall n=2 betrachten wir den Term $(a_1-a_2)^2$ und multiplizieren aus:

$$\begin{split} a_1^2 + a_2^2 - 2a_1a_2 &\geq 0 \implies a_1^2 + a_2^2 + 2a_1a_2 \geq 4a_1a_2 \\ &\implies \left(\frac{1}{2}(a_1 + a_2)\right)^2 = \frac{1}{4}(a_1^2 + a_2^2 + 2a_1a_2) \geq a_1a_2. \end{split}$$

(c) Wir benutzen Induktion nach $k \in \mathbb{N}_{\geq 1}$. <u>IA</u> ist Teilaufgabe (b). <u>IS</u>:

$$\begin{split} \prod_{j=1}^{2^{k+1}} a_j &= \left(\prod_{j=1}^{2^k} a_j\right) \left(\prod_{j=2^{k+1}}^{2^{k+1}} a_j\right) \\ &\stackrel{\text{IH}}{\leq} \left(\frac{1}{2^k} \sum_{j=1}^{2^k} a_j\right)^{2^k} \left(\frac{1}{2^k} \prod_{j=2^{k+1}}^{2^{k+1}} a_j\right)^{2^k} \\ &= \left(\left(\frac{1}{2^k} \sum_{j=1}^{2^k} a_j\right) \left(\frac{1}{2^k} \prod_{j=2^{k+1}}^{2^{k+1}} a_j\right)\right)^{2^k} \\ &\stackrel{\text{(b)}}{\leq} \left(\left(\frac{1}{2} \left(\frac{1}{2^k} \sum_{j=1}^{2^k} a_j + \frac{1}{2^k} \prod_{j=2^{k+1}}^{2^{k+1}} a_j\right)\right)^2\right)^{2^k} \\ &= \left(\frac{1}{2^{k+1}} \sum_{j=1}^{2^{k+1}} a_j\right) \end{split}.$$

(d) Sei $2^{k-1} < n < 2^k$, und definiere $a_l := \frac{1}{n} \sum_{j=1}^n a_j$ für $n+1 \le l \le 2^k$. Dann gilt

$$\prod_{j=1}^{2^{k}} a_{j} \stackrel{\text{(c)}}{\leq} \left(\frac{1}{2^{k}} \sum_{j=1}^{2^{k}} a_{j} \right)^{2^{k}} \\
= \left(\frac{1}{2^{k}} \left(\sum_{j=1}^{n} a_{j} + \sum_{l=n+1}^{2^{k}} a_{l} \right) \right)^{2^{k}} \\
= \left(\frac{1}{2^{k}} \left(\sum_{j=1}^{n} a_{j} + \frac{2^{k} - n}{n} \sum_{j=1}^{n} a_{j} \right) \right)^{2^{k}} \\
= \left(\frac{1}{n} \sum_{j=1}^{n} a_{j} \right)^{2^{k}} \\
= \left(\frac{1}{n} \sum_{j=1}^{n} a_{j} \right)^{n} \left(\frac{1}{n} \sum_{j=1}^{n} a_{j} \right)^{2^{k} - n} \\
\stackrel{\text{(a)}}{=} \left(\frac{1}{n} \sum_{j=1}^{n} a_{j} \right)^{n} \prod_{l=n+1}^{2^{k}} a_{l}.$$

Im Fall $\prod_{l=n+1}^{2^k} a_l = 0$ ist die gewünschte Ungleichung schon klar. Nehmen wir nun also an dass $\prod_{l=n+1}^{2^k} a_l \neq 0$, dann können wir durch $\prod_{l=n+1}^{2^k} a_l$ teilen und so folgt

$$\prod_{j=1}^{n} a_j = \frac{\prod_{j=1}^{2^k} a_j}{\prod_{l=n+1}^{2^k} a_l} \le \left(\frac{1}{n} \sum_{j=1}^{n} a_j\right)^n.$$

Aufgabe 2 (K1-Ring). Sei *R* ein K1-Ring. Beweisen Sie die folgenden Aussagen:

(a) Für alle $a, b \in R$ gelten die folgenden Rechenregeln:

$$-(-a) = a,$$
 $(-a) + (-b) = -(a+b),$ $a(-b) = -(ab).$

- (b) Ist 1 = 0, dann hat R nur ein Element.
- (c) Ist *R* total geordnet, dann gelten für alle $a, b \in R$:

$$a \le b \implies -b \le -a$$
, $a < b \implies -b < -a$.

Lösung. (a) Die Rechenregeln folgen aus:

$$a + (-a) = 0,$$

$$(a + b) + ((-a) + (-b)) = (a + (-a)) + (b + (-b)) = 0 + 0 = 0,$$

$$ab + (-a)b = (a + (-a))b = 0b = 0.$$

(b) Für alle $a \in R$ gilt dann a = a1 = 1a = 0a = 0, und deshalb ist $R = \{0\}$.

$$a < b \implies 0 < b - a \implies 0 < -a - (-b) \implies -b < -a$$
.

Die Implikation $a < b \implies -b < -a$ folgt dann wegen $a = b \iff -b = -a$.

Aufgabe 3 (Infimum und Supremum). Seien $A, B \subset \mathbb{R}$ nichtleer. Beweisen Sie die folgenden Aussagen.

(a) Ist A nach oben beschränkt, dann ist

$$-A := \{-x \mid x \in A\}$$

nach unten beschränkt, und $\inf(-A) = -\sup A$.

(b) Sind A und B nach oben beschränkt, dann ist auch

$$A + B := \{a + b \mid a \in A, b \in B\}$$

nach oben beschränkt, und $\sup(A + B) = \sup A + \sup B$.

(c) Sind A und B beschränkt (d.h., nach oben beschränkt und nach unten beschränkt), dann ist auch

$$A \cdot B := \{ab \mid a \in A, b \in B\}$$

beschränkt, und es gilt

$$\sup A \cdot \sup B \le \sup (A \cdot B).$$

- (d) Geben Sie für jede der nachfolgenden Aussagen je nichtleere beschränkte Mengen $A, B \subseteq \mathbb{R}$ mit inf $A < \sup A$ und inf $B < \sup B$ an, so dass der entsprechende Fall eintritt.
 - (d.1) $\sup A \cdot \sup B = \sup(A \cdot B)$;
 - (d.2) $\sup A \cdot \inf B = \sup(A \cdot B)$;
 - (d.3) $\inf A \cdot \inf B = \sup(A \cdot B)$.
- Lösung. (a) Wir benutzen Aufgabe 2(c): es gilt $-\sup A \le -x$ für alle $-x \in -A$, also -A ist von unten beschränkt. Weiterhin gilt für $y \in \mathbb{R}$:

$$(\forall -x \in -A) \ y \le -x \implies (\forall x \in A) \ x \le -y \implies \sup A \le -y \implies y \le -\sup A,$$

also $-\sup A$ ist das Infimum.

- (b) Ähnlich wie Teilaufgabe (a), aber nun benutzen wir Definition 3.10.(i).
- (c) Diesmal benutzen wir Definition 3.10.(ii). Wir müssen jetzt aber die Vorzeichen beachten! Im Fall $A \subset \mathbb{R}_{>0}$ und $B \subset \mathbb{R}_{>0}$ zeigt man $\sup A \cdot \sup B = \sup(A \cdot B)$. Im Allgemeinen gilt

$$\sup(A \cdot B) = \max(\sup A \cdot \sup B, \sup A \cdot \inf B, \inf A \cdot \sup B, \inf A \cdot \inf B).$$

Hieraus folgt dass die gewünschte Ungleichung und dass $A \cdot B$ von oben beschränkt ist. Ebenso zeigt man auch dass $A \cdot B$ von unten beschränkt ist.

- (d) Zum Beispiel:
 - (d.1) $A = B = \{0, 1\}.$

(d.2)
$$A = \{-2, -1\}$$
 und $B = \{1, 2\}$.

(d.3)
$$A = B = \{-1, 0\}.$$

Aufgabe 4 (Konvergenz – Definition). Diskutieren Sie für jede der folgenden Aussagen, wieso sie *nicht* äquivalent zu der in der Vorlesung definierten Aussage ' $(a_n)_{n\in\mathbb{N}}$ konvergiert' sind. Begründen Sie Ihre Entscheidung durch ein Gegenbeispiel.

- (a) Für alle $a \in \mathbb{R}$ gibt es ein $\varepsilon > 0$ für welches es wiederum ein $n_0 \in \mathbb{N}$ gibt, sodass für alle $n \ge n_0$ gilt, dass $|a_n a| < \varepsilon$.
- (b) Es existiert ein $a \in \mathbb{R}$ mit der folgenden Eigenschaft: Es gibt ein $\varepsilon > 0$, für welches es wiederum ein $n_0 \in \mathbb{N}$ gibt, sodass für alle $n \ge n_0$ gilt, dass $|a_n a| < \varepsilon$.
- (c) Es existiert ein $a \in \mathbb{R}$ mit der folgenden Eigenschaft: Für jedes $\varepsilon > 0$ und jedes $n_0 \in \mathbb{N}$ gibt es ein $n \ge n_0$ mit $|a_n a| < \varepsilon$.
- (d) Es existiert ein $a \in \mathbb{R}$ mit der folgenden Eigenschaft: Für jedes $\varepsilon > 0$ gibt es unendlich viele $n \in \mathbb{N}$ mit $|a_n a| < \varepsilon$.
- (e) Es existiert kein $a \in \mathbb{R}$ mit der folgenden Eigenschaft: Es existiert ein $\varepsilon > 0$ so dass für alle $n_0 \in \mathbb{N}$ ein $n \ge n_0$ existiert mit $|a_n a| > \varepsilon$.

Schließlich: was denken Sie von der folgenden Aussage?

(f) Es existiert ein $a \in \mathbb{R}$ mit der folgenden Eigenschaft: Es existiert kein $\varepsilon > 0$ so dass für alle $n_0 \in \mathbb{N}$ ein $n \ge n_0$ existiert mit $|a_n - a| \ge \varepsilon$.

Lösung. Die Folge $a_n = (-1)^n$ erfüllt die Aussagen (a) bis (d), aber konvergiert natürlich nicht. Für eine konvergente Folge (a_n) ist die Aussage (e) falsch (z.B., $a := 1 + \lim a_n$ erfüllt die genannte Eigenschaft). Die Aussage (f) ist äquivalent zu Konvergenz:

$$\neg (\exists \varepsilon > 0)(\forall n_0 \in \mathbb{N})(\exists n \ge n_0) |a_n - a| \ge \varepsilon$$

$$\iff (\forall \varepsilon > 0) \neg (\forall n_0 \in \mathbb{N})(\exists n \ge n_0) |a_n - a| \ge \varepsilon$$

$$\iff (\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N}) \neg (\exists n \ge n_0) |a_n - a| \ge \varepsilon$$

$$\iff (\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0) |a_n - a| < \varepsilon.$$

Ob in $(f) \ge \varepsilon$ oder $> \varepsilon$ steht ist egal. Aus der zweiten Aussage kann man sofort auf die erste schließen, und aus der ersten auf die zweite indem man die erste mit $\varepsilon/2$ anstellen von ε anwendet. Es gilt übrigens folgendes:

- (a) und (b) sind äquivalent und bedeuten ' $(a_n)_{n\in\mathbb{N}}$ ist beschränkt';
- (c) und (d) sind äquivalent und bedeuten ' $(a_n)_{n\in\mathbb{N}}$ hat ein Häufungspunkt';
- (e) bedeutet ' $(a_n)_{n\in\mathbb{N}}$ konvergiert zu jedem a' und ist Unsinn...

Aufgabe 5. Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergente Folgen in \mathbb{R} . Beweisen Sie, dass die Folge $(c_n)_{n\in\mathbb{N}}$ mit $c_n:=a_n-b_n$ für $n\in\mathbb{N}$, auch konvergiert, und dass gilt

$$\lim_{n\to\infty} c_n = \lim_{n\to\infty} a_n - \lim_{n\to\infty} b_n.$$

Lösung. Wir schreiben $a:=\lim_{n\to\infty}a_n$ und $b:=\lim_{n\to\infty}b_n$. Es gilt $\lim_{n\to\infty}(-b_n)=-b$: für alle $\varepsilon>0$ existiert ein $n_0\in\mathbb{N}$ so dass für alle $n\geq n_0$ gilt $|(-b_n)-(-b)|=|b_n-b|<\varepsilon$. Aus Lemma 4.9.(i) folgt dann

$$a - b = a + (-b) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} (-b_n)^{4.9.(i)} = \lim_{n \to \infty} (a_n + (-b_n)) = \lim_{n \to \infty} c_n.$$