Aufgabe 1 (Differenzenquotienten als Ableitungen). Sei f(x) = x(x-1)(x-2).

- (a) Finden Sie alle $a \in [-2, 2]$, für die $f'(a) = \frac{1}{4} (f(2) f(-2))$ gilt.
- (b) Finden Sie alle $a \in [0, 4]$, für die $f'(a) = \frac{1}{4} (f(4) f(0))$ gilt.

Aufgabe 2 (Mittelwertsatz). Sei $f:[0,1] \to (0,\infty)$ eine stetige Funktion, die auf (0,1) differenzierbar ist und überdies f(0)=1 sowie $f(1)=e=\exp(1)$ erfüllt. Zeigen Sie, dass ein $a\in(0,1)$ mit f(a)=f'(a) existiert.

Aufgabe 3 (L'Hôpital-Regel). Bestimmen Sie folgende Grenzwerte:

- (a) $\lim_{x\to 0} \frac{\cos x 1}{x^2}$.
- (b) $\lim_{x\to 0} \frac{\cos(2x) \cos x + \frac{3}{2}x^2}{x^4}$.
- (c) $\lim_{x\to 0} (1+x)^{1/x}$.

Aufgabe 4. Sei $f: [-\pi/2, \pi/2] \rightarrow [-1, 1]$ gegeben durch

$$f(x) := \begin{cases} -(\sin x)^2, & x \in [-\pi/2, 0), \\ (\sin x)^2, & x \in [0, \pi/2]. \end{cases}$$

Beweisen Sie die folgenden Aussagen:

- (a) f ist differenzierbar auf $(-\pi/2, \pi/2)$. Hinweis: Für die Differenzierbarkeit im kritischen Punkt x=0, zeigen Sie zuerst $\lim_{h\to 0}(\sin h)/h=1$.
- (b) *f* ist streng monoton.
- (c) *f* ist bijektiv.
- (d) f'(0) = 0, aber f hat kein lokales Extremum in 0.

Aufgabe 5 (Ableitungen). Bestimmen Sie die Ableitungen der nachfolgenden Funktionen $\mathbb{R}_{>0} \to \mathbb{R}$.

- (a) $\tan x := (\sin x)/(\cos x)$.
- (b) x^a für $a \in \mathbb{R}$.
- (c) $\sin x \ln x$.
- (d) $\exp(\cos x)$.
- (e) $(x^x)^x$.
- (f) $\ln(f(x))$ für eine differenzierbare Funktion $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$.